科研成果详情

题名Learning with linear mixed model for group recommendation systems
作者
发表日期2019
会议名称11th International Conference on Machine Learning and Computing (ICMLC)
会议录名称ACM International Conference Proceeding Series
卷号Part F148150
页码81-85
会议日期FEB 22-24, 2019
会议地点Zhuhai
会议举办国PEOPLES R CHINA
摘要

Accurate prediction of users' responses to items is one of the main aims of many computational advising applications. Examples include recommending movies, news articles, songs, jobs, clothes, books and so forth. Accurate prediction of inactive users’ responses still remains a challenging problem for many applications. In this paper, we explore the linear mixed model in recommendation system. The recommendation process is naturally modelled as the mixed process between objective effects (fixed effects) and subjective effects (random effects). The latent association between the subjective effects and the users’ responses can be mined through the restricted maximum likelihood method. It turns out the linear mixed models can collaborate items’ attributes and users’ characteristics naturally and effectively. While this model cannot produce the most precisely individual level personalized recommendation, it is relative fast and accurate for group (users)/class (items) recommendation. Numerical examples on GroupLens benchmark problems are presented to show the effectiveness of this method.

关键词Group recommendation Mixed-effect model Movie recommendation Recommendation system
DOI10.1145/3318299.3318342
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & MethodsEngineering, Electrical & Electronic
WOS记录号WOS:000477981500014
Scopus入藏号2-s2.0-85066465931
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11509
专题个人在本单位外知识产出
作者单位
Department of Mathematics,Xi’an Jiaotong-Liverpool University Suzhou,Jiangsu Province,215123,China
推荐引用方式
GB/T 7714
Gao, Baode,Zhan, Guangpeng,Wang, Hanzhanget al. Learning with linear mixed model for group recommendation systems[C], 2019: 81-85.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Gao, Baode]的文章
[Zhan, Guangpeng]的文章
[Wang, Hanzhang]的文章
百度学术
百度学术中相似的文章
[Gao, Baode]的文章
[Zhan, Guangpeng]的文章
[Wang, Hanzhang]的文章
必应学术
必应学术中相似的文章
[Gao, Baode]的文章
[Zhan, Guangpeng]的文章
[Wang, Hanzhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。