科研成果详情

题名PSP-MVSNet: Deep Patch-Based Similarity Perceptual for Multi-view Stereo Depth Inference
作者
发表日期2022
会议名称31st International Conference on Artificial Neural Networks, ICANN 2022
会议录名称ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT I (Lecture Notes in Computer Science)
会议录编者Elias Pimenidis, Plamen Angelov, Chrisina Jayne, Antonios Papaleonidas, Mehmet Aydin
ISBN9783031159190
ISSN0302-9743
卷号Lecture Notes in Computer Science (LNCS, volume 13529)
页码316-328
会议日期SEP 06-09, 2022
会议地点Bristol
会议举办国England
出版者Springer
摘要

This paper proposes PSP-MVSNet for depth inference problem in multi-view stereo (MVS). We first introduce a novel patch-based similarity perceptual (PSP) module for effectively constructing 3D cost volume. Unlike previous methods that leverage variance-based operators to fuse feature volumes of different views, our method leverages a cosine similarity measure to calculate matching scores for pairs of deep feature vectors and then treats these scores as weights for constructing the 3D cost volume. This is based on an important observation that many performance degradation factors, e.g., illumination changes or occlusions, will lead to pixel differences between multi-view images. We demonstrate that a patch-based cosine similarity can be used as explicit supervision for feature learning and can help speed up convergence. Furthermore, To adaptively set different depth ranges for different pixels, we extend an existing dynamic depth range searching method with a simple yet effective improvement. We can use this improved searching method to train our model in an end-to-end manner and further improve the performance of our method. Experimental results show that our method achieves state-of-the-art performance on the DTU dataset and comparative results on the intermediate set of Tanks and Temples dataset. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

关键词Depth estimation Dynamic depth range Multi-view stereo Patch-based similarity
DOI10.1007/978-3-031-15919-0_27
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号WOS:000866210600027
Scopus入藏号2-s2.0-85138793695
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11531
专题理工科技学院
通讯作者Zhang, Hui
作者单位
1.Department of Computer Science, Hong Kong Baptist University, Hong Kong
2.Guangdong Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai, China
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Jie, Leiping,Zhang, Hui. PSP-MVSNet: Deep Patch-Based Similarity Perceptual for Multi-view Stereo Depth Inference[C]//Elias Pimenidis, Plamen Angelov, Chrisina Jayne, Antonios Papaleonidas, Mehmet Aydin: Springer, 2022: 316-328.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jie, Leiping]的文章
[Zhang, Hui]的文章
百度学术
百度学术中相似的文章
[Jie, Leiping]的文章
[Zhang, Hui]的文章
必应学术
必应学术中相似的文章
[Jie, Leiping]的文章
[Zhang, Hui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。