题名 | System-ldentification for Regular Water Waves |
作者 | |
发表日期 | 2023 |
会议录名称 | Proceedings of the IAHR World Congress
![]() |
ISSN | 2521-7119 |
页码 | 2186-2191 |
摘要 | In this paper, we study and estimate the regular water-wave identification methods by use of the Nonlinear auto-regressive model (NARM) and Hammerstein-Wiener model. We analyze and optimize the parameters in multi-regressions. Under the nonlinear group regression model, we selected three common models, such as wavelet transform, decision tree model, and support vector machine model with Gaussian process. Finally, the Hammerstein-Wiener shows a great performance on identification processes. Specifically, we achieve a maximum accuracy of 88% on our validation set. We used the AIC index and NMSE to measure the superiority ofthe model. |
关键词 | Hammerstein-Wiener model Nonlinearauto-regressive model System identification Waveprediction |
DOI | 10.3850/978-90-833476-1-5_iahr40wc-p1436-cd |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-85187705965 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/12295 |
专题 | 个人在本单位外知识产出 |
作者单位 | 1.Zhejiang University,Hangzhou,China 2.Key Laboratory of Coastal Environment and Resources of Zhejiang Province,Westlake University,Hangzhou,China 3.China Ship Scientific Research Center,Wuxi,China 4.Harbin Engineering University,Harbin,China 5.Qingdao Innovation and Development Center of Harbin Engineering University,Qingdao,China 6.Macau University of Science and Technology,MSARC,China |
推荐引用方式 GB/T 7714 | Liang,Aoming,Zheng,Kun,Wang,Zhanet al. System-ldentification for Regular Water Waves[C], 2023: 2186-2191. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论