科研成果详情

题名Automatic Identification of Non-compliant Information in Chinese Text Based on BERT-TextCNN Algorithm
作者
发表日期2024-12-01
会议名称International Conference on Research in Education and Sciencee (ICRES)
会议录名称Proceedings of International Conference on Research in Education and Science: ICRES 2024
会议录编者Mack Shelley & Omer Tayfur Ozturk
ISBN9781952092633
页码2312-2325
会议日期April 27-30, 2024
会议地点Antalya, Turkey
出版者ISTES
摘要

With the rapid global expansion and popularity of short video platforms, the identification and filtering of non-compliant content have become crucial tasks to ensure the health of the online environment. Traditional manual review methods face challenges of low efficiency and poor consistency, urgently requiring an efficient, automated solution. This study proposes a deep learning model based on BERT and TextCNN, aimed at automatically identifying non-compliant information within Chinese text content. By integrating the deep semantic understanding capabilities of the BERT model with the local feature extraction advantages of TextCNN, we designed and implemented an effective model for non-compliant information identification. This research first conducted a detailed preprocessing and analysis of the dataset, including exploring word length distribution, analyzing the proportion of compliant and non-compliant information, and visualizing key vocabulary through word cloud graphics. Subsequently, we trained and tested the model, which achieved an accuracy of 93.61% on the identification task, demonstrating good balance across precision, recall, and F1 score metrics, with an AUC value of 0.96. This indicates the model's high accuracy and reliability in distinguishing between compliant and non-compliant information. The outcomes of this study not only provide an effective automatic identification tool for short video platforms but also offer a new research perspective and practical evidence for the application of deep learning in text analysis.

关键词BERT-TextCNN deep learning natural language processing Non-compliant information identification text analysis
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85217632923
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/12559
专题北师香港浸会大学
作者单位
1.Beijing Normal University-Hong Kong Baptist University,United International College,China
2.Beijing Institute of Technology,China
第一作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Gao, Yuan,Wang, Chunning,Xie, Yingchong. Automatic Identification of Non-compliant Information in Chinese Text Based on BERT-TextCNN Algorithm[C]//Mack Shelley & Omer Tayfur Ozturk: ISTES, 2024: 2312-2325.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Gao, Yuan]的文章
[Wang, Chunning]的文章
[Xie, Yingchong]的文章
百度学术
百度学术中相似的文章
[Gao, Yuan]的文章
[Wang, Chunning]的文章
[Xie, Yingchong]的文章
必应学术
必应学术中相似的文章
[Gao, Yuan]的文章
[Wang, Chunning]的文章
[Xie, Yingchong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。