科研成果详情

题名Implicit feedback recommender system based on matrix factorization
作者
发表日期2018-01-08
会议录名称Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
ISSN1867-8211
卷号2017-September
摘要With the development of the internet age, information overload problem is imminent. At now, almost of recommended models use the explicit feedback. But lots of implicit feedback data are missing. The paper explores the area of recommendation based on large-scale implicit feedback, Where only positive feedback is available. Further, the paper carried on the empirical research on the Implicit Feedback Recommendation Model. By maximized the probability of the user’s choices, IFR mean the progress task into optimization problems In the way, the experiment results confirm the superiority of the model. However, the model is insufficient about online research and a lack of details.
关键词Implicit feedback Matrix decomposition Recommendation system
DOI10.4108/eai.28-9-2017.2273855
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85051018192
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/12870
专题个人在本单位外知识产出
通讯作者Jiang,Na
作者单位
Zhaotong University,China
推荐引用方式
GB/T 7714
Jiang,Na. Implicit feedback recommender system based on matrix factorization[C], 2018.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiang,Na]的文章
百度学术
百度学术中相似的文章
[Jiang,Na]的文章
必应学术
必应学术中相似的文章
[Jiang,Na]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。