题名 | Implicit feedback recommender system based on matrix factorization |
作者 | |
发表日期 | 2018-01-08 |
会议录名称 | Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST
![]() |
ISSN | 1867-8211 |
卷号 | 2017-September |
摘要 | With the development of the internet age, information overload problem is imminent. At now, almost of recommended models use the explicit feedback. But lots of implicit feedback data are missing. The paper explores the area of recommendation based on large-scale implicit feedback, Where only positive feedback is available. Further, the paper carried on the empirical research on the Implicit Feedback Recommendation Model. By maximized the probability of the user’s choices, IFR mean the progress task into optimization problems In the way, the experiment results confirm the superiority of the model. However, the model is insufficient about online research and a lack of details. |
关键词 | Implicit feedback Matrix decomposition Recommendation system |
DOI | 10.4108/eai.28-9-2017.2273855 |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-85051018192 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/12870 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Jiang,Na |
作者单位 | Zhaotong University,China |
推荐引用方式 GB/T 7714 | Jiang,Na. Implicit feedback recommender system based on matrix factorization[C], 2018. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Jiang,Na]的文章 |
百度学术 |
百度学术中相似的文章 |
[Jiang,Na]的文章 |
必应学术 |
必应学术中相似的文章 |
[Jiang,Na]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论