科研成果详情

题名Fast deep learning training through intelligently freezing layers
作者
发表日期2019-07-01
会议名称IEEE Int Congr on Cybermat / 12th IEEE Int Conf on Cyber, Phys and Social Comp (CPSCom) / 15th IEEE Int Conf on Green Computing and Communications (GreenCom) / 12th IEEE Int Conf on Internet of Things (iThings) / 5th IEEE Int Conf on Smart Data
会议录名称Proceedings - 2019 IEEE International Congress on Cybermatics: 12th IEEE International Conference on Internet of Things, 15th IEEE International Conference on Green Computing and Communications, 12th IEEE International Conference on Cyber, Physical and Social Computing and 5th IEEE International Conference on Smart Data, iThings/GreenCom/CPSCom/SmartData 2019
页码1225-1232
会议日期JUL 14-17, 2019
会议地点Atlanta, GA
摘要

As the complexity of deep learning models grows, the difficulty and time of training them also increases. Depending on the task, the complexity of the model, and the hardware resources available, the amount of training time could take hours, weeks or even months. To decrease the training time, we propose a method to intelligently freeze layers during the training process. Our method involves designing a formula to calculate normalized gradient differences for all layers with weights in the model, and then use the calculated values to decide how many layers should be frozen. We implemented our method on top of stochastic gradient descent, and performed experiments on standard image classification dataset CIFAR-10. Results show that our method can accelerate training on VGG nets, ResNets, and DenseNets while having similar test accuracy.

关键词Deep learning Gradient descent Intelligent freezing Neural networks
DOI10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00205
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science ; Science & Technology - Other Topics Telecommunications
WOS类目WOS:000579857700182
WOS记录号WOS:000579857700182
Scopus入藏号2-s2.0-85074836381
引用统计
被引频次:25[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13022
专题个人在本单位外知识产出
作者单位
1.Department of Computer Science,Georgia State University,Atlanta,United States
2.School of Information Science and Technology,Southwest Jiaotong University,Chengdu,China
推荐引用方式
GB/T 7714
Xiao, Xueli,Mudiyanselage,Thosini Bamunu,Ji, Chunyanet al. Fast deep learning training through intelligently freezing layers[C], 2019: 1225-1232.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xiao, Xueli]的文章
[Mudiyanselage,Thosini Bamunu]的文章
[Ji, Chunyan]的文章
百度学术
百度学术中相似的文章
[Xiao, Xueli]的文章
[Mudiyanselage,Thosini Bamunu]的文章
[Ji, Chunyan]的文章
必应学术
必应学术中相似的文章
[Xiao, Xueli]的文章
[Mudiyanselage,Thosini Bamunu]的文章
[Ji, Chunyan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。