题名 | ECG Data Modeling and Analyzing via Deep Representation Learning and Nonparametric Hidden Markov Models |
作者 | |
发表日期 | 2021-07-11 |
会议名称 | 44th International ACM SIGIR Conference on Research and Development in Information Retrieval |
会议录名称 | SIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval
![]() |
页码 | 1905-1909 |
会议日期 | JUL 11-15, 2021 |
会议地点 | ELECTR NETWORK |
摘要 | In modern clinical medicine, electrocardiogram (ECG) is a common diagnosis technique of cardiovascular diseases. The purpose of this paper is to propose a novel model-based clustering approach for analyzing ECG data. Our approach is composed of two modules: representation learning and ECG data clustering. In the module of representation learning, a deep generative model referred to as the hyperspherical variational recurrent autoencoder (HVRAE) is developed to extract the representation of observed ECG data, based on the variational autoencoder (VAE) with long short-term memory (LSTM) networks. In the module of ECG data clustering, we develop a nonparametric hidden Markov model (NHMM) based on Dirichlet process in which the number of hidden states is inferred automatically during the learning process. Moreover, the emission density of each hidden state of our NHMM follows a mixture of von Mises-Fisher (VMF) distributions which have better capability for modeling ECG representations than other commonly used distributions (such as the Gaussian distribution). To learn the proposed VMF-based NHMM, we theoretically develop an effective learning algorithm based on variational Bayes. The merits of our model-based clustering approach for analyzing ECG data are verified through experiments on publicly available ECG data sets. |
关键词 | clustering ECG data HMM representation learning variational autoencoder variational bayes |
DOI | 10.1145/3404835.3463044 |
URL | 查看来源 |
收录类别 | CPCI-S |
语种 | 英语English |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Information Systems |
WOS记录号 | WOS:000719807900216 |
Scopus入藏号 | 2-s2.0-85111628488 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13028 |
专题 | 个人在本单位外知识产出 理工科技学院 |
通讯作者 | Fan, Wentao |
作者单位 | 1.Department of Computer Science and Technology,Huaqiao University,Provincial Key Laboratory for Computer Information Processing Technology,Soochow University,Xiamen,Fujian,China 2.Department of Computer Science and Technology,Huaqiao University,Xiamen,Fujian,China |
推荐引用方式 GB/T 7714 | Zhu, Jiaojiao,Fan, Wentao. ECG Data Modeling and Analyzing via Deep Representation Learning and Nonparametric Hidden Markov Models[C], 2021: 1905-1909. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhu, Jiaojiao]的文章 |
[Fan, Wentao]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhu, Jiaojiao]的文章 |
[Fan, Wentao]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhu, Jiaojiao]的文章 |
[Fan, Wentao]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论