科研成果详情

题名ECG Data Modeling and Analyzing via Deep Representation Learning and Nonparametric Hidden Markov Models
作者
发表日期2021-07-11
会议名称44th International ACM SIGIR Conference on Research and Development in Information Retrieval
会议录名称SIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval
页码1905-1909
会议日期JUL 11-15, 2021
会议地点ELECTR NETWORK
摘要

In modern clinical medicine, electrocardiogram (ECG) is a common diagnosis technique of cardiovascular diseases. The purpose of this paper is to propose a novel model-based clustering approach for analyzing ECG data. Our approach is composed of two modules: representation learning and ECG data clustering. In the module of representation learning, a deep generative model referred to as the hyperspherical variational recurrent autoencoder (HVRAE) is developed to extract the representation of observed ECG data, based on the variational autoencoder (VAE) with long short-term memory (LSTM) networks. In the module of ECG data clustering, we develop a nonparametric hidden Markov model (NHMM) based on Dirichlet process in which the number of hidden states is inferred automatically during the learning process. Moreover, the emission density of each hidden state of our NHMM follows a mixture of von Mises-Fisher (VMF) distributions which have better capability for modeling ECG representations than other commonly used distributions (such as the Gaussian distribution). To learn the proposed VMF-based NHMM, we theoretically develop an effective learning algorithm based on variational Bayes. The merits of our model-based clustering approach for analyzing ECG data are verified through experiments on publicly available ECG data sets.

关键词clustering ECG data HMM representation learning variational autoencoder variational bayes
DOI10.1145/3404835.3463044
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000719807900216
Scopus入藏号2-s2.0-85111628488
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13028
专题个人在本单位外知识产出
理工科技学院
通讯作者Fan, Wentao
作者单位
1.Department of Computer Science and Technology,Huaqiao University,Provincial Key Laboratory for Computer Information Processing Technology,Soochow University,Xiamen,Fujian,China
2.Department of Computer Science and Technology,Huaqiao University,Xiamen,Fujian,China
推荐引用方式
GB/T 7714
Zhu, Jiaojiao,Fan, Wentao. ECG Data Modeling and Analyzing via Deep Representation Learning and Nonparametric Hidden Markov Models[C], 2021: 1905-1909.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhu, Jiaojiao]的文章
[Fan, Wentao]的文章
百度学术
百度学术中相似的文章
[Zhu, Jiaojiao]的文章
[Fan, Wentao]的文章
必应学术
必应学术中相似的文章
[Zhu, Jiaojiao]的文章
[Fan, Wentao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。