科研成果详情

题名Semi-Supervised Anomaly Detection Based on Deep Generative Models with Transformer
作者
发表日期2022-03-04
会议名称6th International Conference on Innovation in Artificial Intelligence (ICIAI)
会议录名称ACM International Conference Proceeding Series
ISBN9781450395502
页码172-177
会议日期MAR 04-06, 2022
会议地点ELECTR NETWORK
摘要

In this work, we propose a novel semi-supervised anomaly detection approach based on deep generative models with Transformers for identifying unusual (abnormal) images from normal ones. Our approach is based on the combination of autoencoder (AE) and generative adversarial networks (GAN). Similar to the vanilla GAN, our model is mainly composed of the generator and discriminator. The generator adopts an encoder-decoderencoder structure to extract meaningful latent representations, in which each encoder is constructed by a Transformer whereas the decoder is realized through the transposed convolution. The discriminator, which is built upon another Transformer, is used to distinguish whether the given image comes from the generator or the training set, while optimizing the encoder in the generator for better latent representations through adversarial training. The distribution of the normal data can be learned by minimizing the gap between the original image space and the latent image space during the training process. The abnormal images are detected if their distributions are different from the learned normal distributions. The merits of the proposed anomaly detection approach are demonstrated by comparing it with other generative anomaly detection approaches through experiments on three benchmark image data sets.

关键词Anomaly detection GAN generative model Transformer
DOI10.1145/3529466.3529470
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号WOS:001117761800029
Scopus入藏号2-s2.0-85131859552
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13099
专题个人在本单位外知识产出
理工科技学院
作者单位
College of Computer Science and Technology,Huaqiao University,Xiamen,China
推荐引用方式
GB/T 7714
Shangguan, Weimin,Fan, Wentao,Chen, Ziyi. Semi-Supervised Anomaly Detection Based on Deep Generative Models with Transformer[C], 2022: 172-177.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Shangguan, Weimin]的文章
[Fan, Wentao]的文章
[Chen, Ziyi]的文章
百度学术
百度学术中相似的文章
[Shangguan, Weimin]的文章
[Fan, Wentao]的文章
[Chen, Ziyi]的文章
必应学术
必应学术中相似的文章
[Shangguan, Weimin]的文章
[Fan, Wentao]的文章
[Chen, Ziyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。