科研成果详情

发表状态已发表Published
题名Variational learning for Dirichlet process mixtures of Dirichlet distributions and applications
作者
发表日期2014
发表期刊Multimedia Tools and Applications
ISSN/eISSN1380-7501
卷号70期号:3页码:1685-1702
摘要

In this paper, we propose a Bayesian nonparametric approach for modeling and selection based on a mixture of Dirichlet processes with Dirichlet distributions, which can also be seen as an infinite Dirichlet mixture model. The proposed model uses a stick-breaking representation and is learned by a variational inference method. Due to the nature of Bayesian nonparametric approach, the problems of overfitting and underfitting are prevented. Moreover, the obstacle of estimating the correct number of clusters is sidestepped by assuming an infinite number of clusters. Compared to other approximation techniques, such as Markov chainMonte Carlo (MCMC), which require high computational cost and whose convergence is difficult to diagnose, the whole inference process in the proposed variational learning framework is analytically tractable with closed-form solutions.Additionally, the proposed infinite Dirichlet mixture model with variational learning requires only a modest amount of computational power which makes it suitable to large applications. The effectiveness of our model is experimentally investigated through both synthetic data sets and challenging real-life multimedia applications namely image spam filtering and human action videos categorization. © Springer Science+Business Media, LLC 2012.

关键词Dirichlet mixtures Dirichlet process Human action video Image spam Infinite mixtures Nonparametric Bayesian Variational learning
DOI10.1007/s11042-012-1191-0
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000337156500015
Scopus入藏号2-s2.0-84905570276
引用统计
被引频次:17[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13291
专题个人在本单位外知识产出
理工科技学院
通讯作者Bouguila, Nizar
作者单位
1.Department of Electrical and Computer Engineering, Concordia University,Montreal, QC,Canada
2.Concordia Institute for Information Systems Engineering (CIISE), Concordia University,Montreal, QC,Canada
推荐引用方式
GB/T 7714
Fan, Wentao,Bouguila, Nizar. Variational learning for Dirichlet process mixtures of Dirichlet distributions and applications[J]. Multimedia Tools and Applications, 2014, 70(3): 1685-1702.
APA Fan, Wentao, & Bouguila, Nizar. (2014). Variational learning for Dirichlet process mixtures of Dirichlet distributions and applications. Multimedia Tools and Applications, 70(3), 1685-1702.
MLA Fan, Wentao,et al."Variational learning for Dirichlet process mixtures of Dirichlet distributions and applications". Multimedia Tools and Applications 70.3(2014): 1685-1702.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
百度学术
百度学术中相似的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
必应学术
必应学术中相似的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。