科研成果详情

题名Variational learning of dirichlet process mixtures of generalized dirichlet distributions and its applications
作者
发表日期2012
会议名称8th International Conference on Advanced Data Mining and Applications, ADMA 2012
会议录名称Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN0302-9743
卷号7713 LNAI
页码199-213
会议日期15-18 December 2012
会议地点Nanjing, China
摘要

In this paper, we introduce a nonparametric Bayesian approach for clustering based on both Dirichlet processes and generalized Dirichlet (GD) distribution. Thanks to the proposed approach, the obstacle of estimating the correct number of clusters is sidestepped by assuming an infinite number of components. The problems of overfitting and underfitting the data are also prevented due to the nature of the nonparametric Bayesian framework. The proposed model is learned through a variational method in which the whole inference process is analytically tractable with closed-form solutions. The effectiveness and merits of the proposed clustering approach are investigated on two challenging real applications namely anomaly intrusion detection and image spam filtering. © Springer-Verlag 2012.

关键词Clustering Dirichlet process Generalized dirichlet mixtures Intrusion detection Mixture models Nonparametric Bayesian Spam image Variational inference
DOI10.1007/978-3-642-35527-1_17
URL查看来源
语种英语English
Scopus入藏号2-s2.0-84872692081
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13304
专题个人在本单位外知识产出
理工科技学院
通讯作者Fan, Wentao
作者单位
Concordia Institute for Information Systems Engineering,Concordia University,QC,Canada
推荐引用方式
GB/T 7714
Fan, Wentao,Bouguila, Nizar. Variational learning of dirichlet process mixtures of generalized dirichlet distributions and its applications[C], 2012: 199-213.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
百度学术
百度学术中相似的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
必应学术
必应学术中相似的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。