科研成果详情

题名A Multi-Scale Decomposition MLP-Mixer for Time Series Analysis
作者
发表日期2024
会议名称50th International Conference on Very Large Data Bases, VLDB 2024
会议录名称Proceedings of the VLDB Endowment
卷号17
期号7
页码1723-1736
会议日期2024-08-24——2024-08-29
会议地点Guangzhou
摘要Time series data, including univariate and multivariate ones, are characterized by unique composition and complex multi-scale temporal variations. They often require special consideration of decomposition and multi-scale modeling to analyze. Existing deep learning methods on this best ft to univariate time series only, and have not sufciently considered sub-series modeling and decomposition completeness. To address these challenges, we propose MSD-Mixer, a Multi-Scale Decomposition MLP-Mixer, which learns to explicitly decompose and represent the input time series in its diferent layers. To handle the multi-scale temporal patterns and multivariate dependencies, we propose a novel temporal patching approach to model the time series as multi-scale patches, and employ MLPs to capture intra- and inter-patch variations and channel-wise correlations. In addition, we propose a novel loss function to constrain both the mean and the autocorrelation of the decomposition residual for better decomposition completeness. Through extensive experiments on various real-world datasets for fve common time series analysis tasks, we demonstrate that MSD-Mixer consistently and signifcantly outperforms other state-of-the-art algorithms with better efciency.
DOI10.14778/3654621.3654637
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85195662710
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13682
专题北师香港浸会大学
作者单位
1.Department of Computer Science and Engineering,The Hong Kong University of Science and Technology,Hong Kong
2.Guangdong Provincial Key Laboratory IRADS and Department of Computer Science,BNU-HKBU United International College,China
3.Guangdong Enterprise Key Laboratory for Urban Sensing,Monitoring and Early Warning Guangzhou Urban Planning and Design Survey Research Institute,China
推荐引用方式
GB/T 7714
Zhong,Shuhan,Song,Sizhe,Zhuo,Weipenget al. A Multi-Scale Decomposition MLP-Mixer for Time Series Analysis[C], 2024: 1723-1736.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhong,Shuhan]的文章
[Song,Sizhe]的文章
[Zhuo,Weipeng]的文章
百度学术
百度学术中相似的文章
[Zhong,Shuhan]的文章
[Song,Sizhe]的文章
[Zhuo,Weipeng]的文章
必应学术
必应学术中相似的文章
[Zhong,Shuhan]的文章
[Song,Sizhe]的文章
[Zhuo,Weipeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。