科研成果详情

题名GRAFICS: Graph Embedding-based Floor Identification Using Crowdsourced RF Signals
作者
发表日期2022
会议名称42nd IEEE International Conference on Distributed Computing Systems, ICDCS 2022
会议录名称Proceedings - International Conference on Distributed Computing Systems
卷号2022-July
页码1051-1061
会议日期2022-07-10——2022-07-13
会议地点Bologna
摘要We study the problem of floor identification for radiofrequency (RF) signal samples obtained in a crowdsourced manner, where the signal samples are highly heterogeneous and most samples lack their floor labels. We propose GRAFICS, a graph embedding-based floor identification system. GRAFICS first builds a highly versatile bipartite graph model, having APs on one side and signal samples on the other. GRAFICS then learns the low-dimensional embeddings of signal samples via a novel graph embedding algorithm named E-LINE. GRAFICS finally clusters the node embeddings along with the embeddings of a few labeled samples through a proximity-based hierarchical clustering, which eases the floor identification of every new sample. We validate the effectiveness of GRAFICS based on two large-scale datasets that contain RF signal records from 204 buildings in Hangzhou, China, and five buildings in Hong Kong. Our experiment results show that GRAFICS achieves highly accurate prediction performance with only a few labeled samples (96% in both micro- and macro-F scores) and significantly outperforms several state-of-the-art algorithms (by about 45% improvement in micro-F score and 53% in macro-F score).
关键词Floor identification, graph embedding, crowdsourced RF signals
DOI10.1109/ICDCS54860.2022.00105
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85140421685
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13686
专题个人在本单位外知识产出
作者单位
1.The Hong Kong University of Science and Technology,Hong Kong
2.University of Colorado Boulder,United States
3.Texas State University,United States
推荐引用方式
GB/T 7714
Zhuo,Weipeng,Zhao,Ziqi,Ho Chiu,Kaet al. GRAFICS: Graph Embedding-based Floor Identification Using Crowdsourced RF Signals[C], 2022: 1051-1061.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhuo,Weipeng]的文章
[Zhao,Ziqi]的文章
[Ho Chiu,Ka]的文章
百度学术
百度学术中相似的文章
[Zhuo,Weipeng]的文章
[Zhao,Ziqi]的文章
[Ho Chiu,Ka]的文章
必应学术
必应学术中相似的文章
[Zhuo,Weipeng]的文章
[Zhao,Ziqi]的文章
[Ho Chiu,Ka]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。