科研成果详情

题名TVConv: Efficient Translation Variant Convolution for Layout-aware Visual Processing
作者
发表日期2022
会议名称2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
会议录名称Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN1063-6919
卷号2022-June
页码12538-12548
会议日期2022-06-19——2022-06-24
会议地点New Orleans
摘要As convolution has empowered many smart applications, dynamic convolution further equips it with the ability to adapt to diverse inputs. However, the static and dynamic convolutions are either layout-agnostic or computation-heavy, making it inappropriate for layout-specific applications, e.g., face recognition and medical image segmentation. We observe that these applications naturally exhibit the characteristics of large intra-image (spatial) variance and small cross-image variance. This observation motivates our efficient translation variant convolution (TVConv) for layout-aware visual processing. Technically, TVConv is composed of affinity maps and a weight-generating block. While affinity maps depict pixel-paired relationships gracefully, the weight-generating block can be explicitly over-parameterized for better training while maintaining efficient inference. Although conceptually simple, TVConv significantly improves the efficiency of the convolution and can be readily plugged into various network architectures. Extensive experiments on face recognition show that TVConv reduces the computational cost by up to 3.1 × and improves the corresponding throughput by 2.3× while maintaining a high accuracy compared to the depthwise convolution. Moreover, for the same computation cost, we boost the mean accuracy by up to 4.21%. We also conduct experiments on the optic disc/cup segmentation task and obtain better generalization performance, which helps mitigate the critical data scarcity issue. Code is available at https://github.com/JierunChen/TVConv.
关键词biological and cell microscopy Deep learning architectures and techniques Efficient learning and inferences Face and gestures Medical Vision applications and systems
DOI10.1109/CVPR52688.2022.01222
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85141567667
引用统计
被引频次:28[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13687
专题个人在本单位外知识产出
作者单位
1.The Hong Kong University of Science and Technology,Hong Kong
2.University of Colorado at Boulder,United States
推荐引用方式
GB/T 7714
Chen,Jierun,He,Tianlang,Zhuo,Weipenget al. TVConv: Efficient Translation Variant Convolution for Layout-aware Visual Processing[C], 2022: 12538-12548.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen,Jierun]的文章
[He,Tianlang]的文章
[Zhuo,Weipeng]的文章
百度学术
百度学术中相似的文章
[Chen,Jierun]的文章
[He,Tianlang]的文章
[Zhuo,Weipeng]的文章
必应学术
必应学术中相似的文章
[Chen,Jierun]的文章
[He,Tianlang]的文章
[Zhuo,Weipeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。