科研成果详情

题名Automatic Epicardial Fat Segmentation and Quantification of CT Scans Using Dual U-Nets with a Morphological Processing Layer
作者
发表日期2020
发表期刊IEEE Access
ISSN/eISSN2169-3536
卷号8页码:128032-128041
摘要

The epicardial fat plays a key role in the development of many cardiovascular diseases. It is necessary and useful to precisely segment this fat from CT scans in clinical studies. However, it is not feasible to manually segment this fat in clinical practice, as the workload and cost for technicians or physicians is quite high. In this work, we propose a novel method for automatic segmentation and quantification of epicardial fat from CT scans accurately. In detail, dual U-Nets with the morphological processing layer is used for this goal. The first network is based on the U-Net framework to detect the pericardium, before segmenting its inside region. A morphological layer is concatenated as the following layer of the first network, to refine and obtain the ideal inside region of the pericardium. While the second network is also applied using U-Net as its backbone to find and segment the epicardial fat of the processed inside region from the pericardium using the first network. Our proposed method obtains the highest mean Dice similarity (91.19%), correlation coefficient (0.9304) compared to other state-of-art methods on a cardiac CT dataset with 20 patients. The results indicate our proposed method is effective for quantifying epicardial fat automatically. © 2013 IEEE.

关键词Cardiac fat CT deep learning image segmentation medical imaging analysis
DOI10.1109/ACCESS.2020.3008190
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000551832100001
引用统计
被引频次:24[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/1851
专题研究生院
通讯作者Zhang, Bob
作者单位
1.Department of Computer and Information Science, Pami Research Group, Faculty of Science and Technology, University of Macau, Taipa, Macao
2.BNU-UIC Joint Ai Research Institute, Beijing Normal University, Zhuhai, China
3.Faculty of Science and Technology, University of Macau, Taipa, Macao
第一作者单位理工科技学院
通讯作者单位理工科技学院
推荐引用方式
GB/T 7714
Zhang, Qi,Zhou, Jianhang,Zhang, Bobet al. Automatic Epicardial Fat Segmentation and Quantification of CT Scans Using Dual U-Nets with a Morphological Processing Layer[J]. IEEE Access, 2020, 8: 128032-128041.
APA Zhang, Qi, Zhou, Jianhang, Zhang, Bob, Jia, Weijia, & Wu, Enhua. (2020). Automatic Epicardial Fat Segmentation and Quantification of CT Scans Using Dual U-Nets with a Morphological Processing Layer. IEEE Access, 8, 128032-128041.
MLA Zhang, Qi,et al."Automatic Epicardial Fat Segmentation and Quantification of CT Scans Using Dual U-Nets with a Morphological Processing Layer". IEEE Access 8(2020): 128032-128041.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Qi]的文章
[Zhou, Jianhang]的文章
[Zhang, Bob]的文章
百度学术
百度学术中相似的文章
[Zhang, Qi]的文章
[Zhou, Jianhang]的文章
[Zhang, Bob]的文章
必应学术
必应学术中相似的文章
[Zhang, Qi]的文章
[Zhou, Jianhang]的文章
[Zhang, Bob]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。