发表状态 | 已发表Published |
题名 | On numerical entropy inequalities for a class of relaxed schemes |
作者 | |
发表日期 | 2001 |
发表期刊 | Quarterly of Applied Mathematics
![]() |
ISSN/eISSN | 0033-569X |
卷号 | 59期号:2页码:391-399 |
摘要 | In [4], Jin and Xin developed a class of first- and second-order relaxing schemes for nonlinear conservation laws. They also obtained the relaxed schemes for conservation laws by using a Hilbert expansion for the relaxing schemes. The relaxed schemes were proved to be total variational diminishing (TVD) in the zero relaxation limit for scalar equations. In this paper, by properly choosing the numerical entropy flux, we show that the relaxed schemes also satisfy the entropy inequalities. As a consequence, the L1 convergence rate of O (√Δt) for the relaxed schemes can be established. |
关键词 | Hyperbolic conservation laws Numerical entropy inequality Relaxed schemes Relaxing schemes |
DOI | 10.1090/qam/1828460 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000168508500009 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/2060 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Tang, Huazhong |
作者单位 | 1.State key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics, Academia Sinica, Beijing 100080, P. R. China 2.Dept. of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong 3.Institute of Systems Science, Academia Sinica, Beijing 100080, P. R. China |
推荐引用方式 GB/T 7714 | Tang, Huazhong,Tang, Tao,Wang, Jinghua. On numerical entropy inequalities for a class of relaxed schemes[J]. Quarterly of Applied Mathematics, 2001, 59(2): 391-399. |
APA | Tang, Huazhong, Tang, Tao, & Wang, Jinghua. (2001). On numerical entropy inequalities for a class of relaxed schemes. Quarterly of Applied Mathematics, 59(2), 391-399. |
MLA | Tang, Huazhong,et al."On numerical entropy inequalities for a class of relaxed schemes". Quarterly of Applied Mathematics 59.2(2001): 391-399. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论