科研成果详情

发表状态已发表Published
题名Admissibility and minimaxity of the uniform design measure in nonparametric regression model
作者
发表日期2000
发表期刊Journal of Statistical Planning and Inference
ISSN/eISSN0378-3758
卷号83期号:1页码:101-111
摘要

This paper studies the optimal design problem of a nonparametric regression model. A frame of the decision theory for nonparametric experimental designs is set up. Under this frame, the admissible minimaxity of the uniform design measure π, which has a constant density over the experimental domain, is obtained. Furthermore, we prove that π is the best design among a reasonable subclass of designs. © 2000 Elsevier Science B.V.

关键词62K05 62K99 Apporximately linear model Decision theory Nonparametric regression model Optimal design Uniform design Uniform design measure
DOI10.1016/s0378-3758(99)00089-0
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000084148800007
Scopus入藏号2-s2.0-0000830389
引用统计
被引频次:26[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/2490
专题个人在本单位外知识产出
通讯作者Xie, Minyu
作者单位
1.Department of Mathematics, Ctrl. China Norm. Univ., W., Hubei, China
2.Hong Kong Baptist University, Hong Kong, China
推荐引用方式
GB/T 7714
Xie, Minyu,Fang, Kaitai. Admissibility and minimaxity of the uniform design measure in nonparametric regression model[J]. Journal of Statistical Planning and Inference, 2000, 83(1): 101-111.
APA Xie, Minyu, & Fang, Kaitai. (2000). Admissibility and minimaxity of the uniform design measure in nonparametric regression model. Journal of Statistical Planning and Inference, 83(1), 101-111.
MLA Xie, Minyu,et al."Admissibility and minimaxity of the uniform design measure in nonparametric regression model". Journal of Statistical Planning and Inference 83.1(2000): 101-111.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xie, Minyu]的文章
[Fang, Kaitai]的文章
百度学术
百度学术中相似的文章
[Xie, Minyu]的文章
[Fang, Kaitai]的文章
必应学术
必应学术中相似的文章
[Xie, Minyu]的文章
[Fang, Kaitai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。