科研成果详情

题名Attention-Based Aggregation Graph Networks for Knowledge Graph Information Transfer
作者
发表日期2020
会议名称24th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2020
会议录名称Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN978-3-030-47436-2
ISSN0302-9743
卷号12085
页码542-554
会议日期May 11–14, 2020
会议地点Singapore
出版者Springer
摘要

Knowledge graph completion (KGC) aims to predict missing information in a knowledge graph. Many existing embedding-based KGC models solve the Out-of-knowledge-graph (OOKG) entity problem (also known as zero-shot entity problem) by utilizing textual information resources such as descriptions and types. However, few works utilize the extra structural information to generate embeddings. In this paper, we propose a new zero-shot scenario: how to acquire the embedding vector of a relation that is not observed at training time. Our work uses a convolutional transition and attention-based aggregation graph neural network to solve both the OOKG entity problem and the new OOKG relation problem without retraining, regarding the structural neighbors as the auxiliary information. The experimental results show the effectiveness of our proposed models in solving the OOKG relation problem. For the OOKG entity problem, our model performs better than the previous GNN-based model by 23.9% in NELL-995-Tail dataset. © Springer Nature Switzerland AG 2020.

关键词Graph Attention Network Graph Neural Network Knowledge graph Zero-shot learning
DOI10.1007/978-3-030-47436-2_41
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science ; Artificial Intelligence ; Computer Science ; Information SystemsComputer Science, Interdisciplinary Applications ; Computer Science ; Theory & Methods
WOS记录号WOS:000716989100041
引用统计
被引频次:13[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/4470
专题个人在本单位外知识产出
作者单位
1.Shanghai Jiao Tong University, Shanghai, China
2.State of Key Lab of Internet of Things for Smart City, University of Macau, Macau, China
推荐引用方式
GB/T 7714
Zhao, Ming,Jia, Weijia,Huang, Yusheng. Attention-Based Aggregation Graph Networks for Knowledge Graph Information Transfer[C]: Springer, 2020: 542-554.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhao, Ming]的文章
[Jia, Weijia]的文章
[Huang, Yusheng]的文章
百度学术
百度学术中相似的文章
[Zhao, Ming]的文章
[Jia, Weijia]的文章
[Huang, Yusheng]的文章
必应学术
必应学术中相似的文章
[Zhao, Ming]的文章
[Jia, Weijia]的文章
[Huang, Yusheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。