题名 | Crowdsourced time-sync video tagging using semantic association graph |
作者 | |
发表日期 | 2017 |
会议名称 | 2017 IEEE International Conference on Multimedia and Expo, ICME 2017 |
会议录名称 | Proceedings - IEEE International Conference on Multimedia and Expo
![]() |
ISBN | 978-1-5090-6068-9; 978-1-5090-6067-2 |
ISSN | 1945-788X; 1945-7871 |
页码 | 547-552 |
会议日期 | 10-14 July 2017 |
会议地点 | Hong Kong, China |
出版者 | IEEE Computer Society |
摘要 | Time-sync comments reveal a new way of extracting the online video tags. However, such time-sync comments have lots of noises due to users' diverse comments, introducing great challenges for accurate and fast video tag extractions. In this paper, we propose an unsupervised video tag extraction algorithm named Semantic Weight-Inverse Document Frequency (SW-IDF). SW-IDF first generates corresponding semantic association graph (SAG) using semantic similarities and timestamps of the time-sync comments. Then it clusters the comments into sub-graphs of different topics and assigns weight to each comment based on SAG. This can clearly differentiate the meaningful comments with the noises. In this way, the noises can be identified, and effectively eliminated. Extensive experiments have shown that SW-IDF can achieve 0.3045 precision and 0.6530 recall in high-density comments; 0.3800 precision and 0.4460 recall in low-density comments. It is the best performance among the existing unsupervised algorithms. © 2017 IEEE. |
关键词 | Crowdsourced time-sync comments Keywords extraction Semantic association graph Video tagging |
DOI | 10.1109/ICME.2017.8019364 |
URL | 查看来源 |
收录类别 | CPCI-S |
语种 | 英语English |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Software Engineering ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000426984300089 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/4493 |
专题 | 个人在本单位外知识产出 |
作者单位 | 1.Shanghai Jiao Tong University, Shanghai, China 2.Nanjing University of Posts and Telecommunications, Nanjing, China 3.Tokyo Institute of Technology, Tokyo, Japan |
推荐引用方式 GB/T 7714 | Yang, Wenmian,Ruan, Na,Gao, Wenyuanet al. Crowdsourced time-sync video tagging using semantic association graph[C]: IEEE Computer Society, 2017: 547-552. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论