科研成果详情

题名TransT: Type-Based Multiple Embedding Representations for Knowledge Graph Completion
作者
发表日期2017
会议名称European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2017
会议录名称Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN978-3-319-71249-9
ISSN0302-9743
卷号10534
页码717-733
会议日期September 18–22, 2017
会议地点Skopje, Macedonia
出版者Springer Verlag
摘要

Knowledge graph completion with representation learning predicts new entity-relation triples from the existing knowledge graphs by embedding entities and relations into a vector space. Most existing methods focus on the structured information of triples and maximize the likelihood of them. However, they neglect semantic information contained in most knowledge graphs and the prior knowledge indicated by the semantic information. To overcome this drawback, we propose an approach that integrates the structured information and entity types which describe the categories of entities. Our approach constructs relation types from entity types and utilizes type-based semantic similarity of the related entities and relations to capture prior distributions of entities and relations. With the type-based prior distributions, our approach generates multiple embedding representations of each entity in different contexts and estimates the posterior probability of entity and relation prediction. Extensive experiments show that our approach outperforms previous semantics-based methods. The source code of this paper can be obtained from https://github.com/shh/transt. © 2017, Springer International Publishing AG.

关键词Knowledge graph Multiple embedding Representation learning
DOI10.1007/978-3-319-71249-9_43
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号WOS:000443109900043
引用统计
被引频次:48[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/4500
专题个人在本单位外知识产出
作者单位
1.Shanghai Jiao Tong University, Shanghai, 200240, China
2.Nanjing University of Posts and Telecommunications, Nanjing, 210042, China
推荐引用方式
GB/T 7714
Ma, Shiheng,Ding, Jianhui,Jia, Weijiaet al. TransT: Type-Based Multiple Embedding Representations for Knowledge Graph Completion[C]: Springer Verlag, 2017: 717-733.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ma, Shiheng]的文章
[Ding, Jianhui]的文章
[Jia, Weijia]的文章
百度学术
百度学术中相似的文章
[Ma, Shiheng]的文章
[Ding, Jianhui]的文章
[Jia, Weijia]的文章
必应学术
必应学术中相似的文章
[Ma, Shiheng]的文章
[Ding, Jianhui]的文章
[Jia, Weijia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。