科研成果详情

发表状态已发表Published
题名Border Trespasser Classification Using Artificial Intelligence
作者
发表日期2021
发表期刊IEEE Access
ISSN/eISSN2169-3536
卷号9页码:72284-72298
摘要

Monitoring the border is a very important task for national security. Wireless sensor networks (WSN) appear well suited in this application. This work aims to monitor a large-scale geographical framework that represents the borders of countries. Researchers take the Tunisian Algerian border as an example. This border is labeled by the illegal passage of intruders between the two countries. The task is to identify the intruders and study their kinematics based on speed, acceleration, and bearing. The appropriate types of sensors are determined according to the nature of intruders. Six classification techniques are compared which are: Naïve Bayes, Support Vector Machine (SVM), Multilayer Perceptron, Best First Decision Tree (BF-Tree), Logistic Alternating Decision Tree (LAD-Tree), and J48. The comparison of the performance of the classification techniques is provided in terms of correct differentiation rates, confusion matrices, and the time taken to build each model. Four different levels of cross-validation are used to validate the classifiers. The results indicate that J48 has achieved the highest correct classification rate with a relatively low model-building time. © 2013 IEEE.

关键词Border surveillance classification machine learning sensing wireless sensor networks
DOI10.1109/ACCESS.2021.3079702
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering ; Telecommunications
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000652045100001
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/4961
专题理工科技学院
通讯作者Othmani, Mohsen
作者单位
1.Communication System Laboratory (SysCom), National Engineering School of Tunis, University of Tunis El Manar, Tunis, Tunisia
2.Institute of Artificial Intelligence and Future Networks, Beijing Normal University at Zhuhai, BNU-HKBU United International College, Zhuhai 519087, China
推荐引用方式
GB/T 7714
Othmani, Mohsen,Jeridi, Mohamed Hechmi,Wang, Qingguoet al. Border Trespasser Classification Using Artificial Intelligence[J]. IEEE Access, 2021, 9: 72284-72298.
APA Othmani, Mohsen, Jeridi, Mohamed Hechmi, Wang, Qingguo, & Ezzedine, Tahar. (2021). Border Trespasser Classification Using Artificial Intelligence. IEEE Access, 9, 72284-72298.
MLA Othmani, Mohsen,et al."Border Trespasser Classification Using Artificial Intelligence". IEEE Access 9(2021): 72284-72298.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Othmani, Mohsen]的文章
[Jeridi, Mohamed Hechmi]的文章
[Wang, Qingguo]的文章
百度学术
百度学术中相似的文章
[Othmani, Mohsen]的文章
[Jeridi, Mohamed Hechmi]的文章
[Wang, Qingguo]的文章
必应学术
必应学术中相似的文章
[Othmani, Mohsen]的文章
[Jeridi, Mohamed Hechmi]的文章
[Wang, Qingguo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。