发表状态 | 已发表Published |
题名 | Semiparametric mean–covariance regression analysis for longitudinal data |
作者 | |
发表日期 | 2010 |
发表期刊 | Journal of the American Statistical Association
![]() |
ISSN/eISSN | 0162-1459 |
卷号 | 105期号:489页码:181-193 |
摘要 | Efficient estimation of the regression coefficients in longitudinal data analysis requires a correct specification of the covariance structure. Existing approaches usually focus on modeling the mean with specification of certain covariance structures, which may lead to inefficient or biased estimators of parameters in the mean if misspecification occurs. In this article, we propose a data-driven approach based on semiparametric regression models for the mean and the covariance simultaneously, motivated by the modified Cholesky decomposition. A regression spline-based approach using generalized estimating equations is developed to estimate the parameters in the mean and the covariance. The resulting estimators for the regression coefficients in both the mean and the covariance are shown to be consistent and asymptotically normally distributed. In addition, the nonparametric functions in these two structures are estimated at their optimal rate of convergence. Simulation studies and a real data analysis show that the proposed approach yields highly efficient estimators for the parameters in the mean, and provides parsimonious estimation for the covariance structure. Supplemental materials for the article are available online. © 2010 American Statistical Association. |
关键词 | Covariance misspecification Efficiency Generalized estimating equation Longitudinal data Modified Cholesky decomposition Semiparametric models |
DOI | 10.1198/jasa.2009.tm08485 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Statistics & Probability |
WOS记录号 | WOS:000276786500019 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/5073 |
专题 | 个人在本单位外知识产出 |
作者单位 | 1.Department of Statistics and Applied Probability, National University of SingaporeSG 117546, Singapore 2.Department of Statistics and Finance, University of Science and Technology, Hefei, Anhui 230026, China 3.School of Mathematics, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom |
推荐引用方式 GB/T 7714 | Leng, Chenlei,Zhang, Weiping,Pan, Jianxin. Semiparametric mean–covariance regression analysis for longitudinal data[J]. Journal of the American Statistical Association, 2010, 105(489): 181-193. |
APA | Leng, Chenlei, Zhang, Weiping, & Pan, Jianxin. (2010). Semiparametric mean–covariance regression analysis for longitudinal data. Journal of the American Statistical Association, 105(489), 181-193. |
MLA | Leng, Chenlei,et al."Semiparametric mean–covariance regression analysis for longitudinal data". Journal of the American Statistical Association 105.489(2010): 181-193. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论