科研成果详情

发表状态已发表Published
题名Semiparametric mean–covariance regression analysis for longitudinal data
作者
发表日期2010
发表期刊Journal of the American Statistical Association
ISSN/eISSN0162-1459
卷号105期号:489页码:181-193
摘要

Efficient estimation of the regression coefficients in longitudinal data analysis requires a correct specification of the covariance structure. Existing approaches usually focus on modeling the mean with specification of certain covariance structures, which may lead to inefficient or biased estimators of parameters in the mean if misspecification occurs. In this article, we propose a data-driven approach based on semiparametric regression models for the mean and the covariance simultaneously, motivated by the modified Cholesky decomposition. A regression spline-based approach using generalized estimating equations is developed to estimate the parameters in the mean and the covariance. The resulting estimators for the regression coefficients in both the mean and the covariance are shown to be consistent and asymptotically normally distributed. In addition, the nonparametric functions in these two structures are estimated at their optimal rate of convergence. Simulation studies and a real data analysis show that the proposed approach yields highly efficient estimators for the parameters in the mean, and provides parsimonious estimation for the covariance structure. Supplemental materials for the article are available online. © 2010 American Statistical Association.

关键词Covariance misspecification Efficiency Generalized estimating equation Longitudinal data Modified Cholesky decomposition Semiparametric models
DOI10.1198/jasa.2009.tm08485
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000276786500019
引用统计
被引频次:83[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/5073
专题个人在本单位外知识产出
作者单位
1.Department of Statistics and Applied Probability, National University of SingaporeSG 117546, Singapore
2.Department of Statistics and Finance, University of Science and Technology, Hefei, Anhui 230026, China
3.School of Mathematics, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
推荐引用方式
GB/T 7714
Leng, Chenlei,Zhang, Weiping,Pan, Jianxin. Semiparametric mean–covariance regression analysis for longitudinal data[J]. Journal of the American Statistical Association, 2010, 105(489): 181-193.
APA Leng, Chenlei, Zhang, Weiping, & Pan, Jianxin. (2010). Semiparametric mean–covariance regression analysis for longitudinal data. Journal of the American Statistical Association, 105(489), 181-193.
MLA Leng, Chenlei,et al."Semiparametric mean–covariance regression analysis for longitudinal data". Journal of the American Statistical Association 105.489(2010): 181-193.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Leng, Chenlei]的文章
[Zhang, Weiping]的文章
[Pan, Jianxin]的文章
百度学术
百度学术中相似的文章
[Leng, Chenlei]的文章
[Zhang, Weiping]的文章
[Pan, Jianxin]的文章
必应学术
必应学术中相似的文章
[Leng, Chenlei]的文章
[Zhang, Weiping]的文章
[Pan, Jianxin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。