发表状态 | 已发表Published |
题名 | Boosting applied to classification of mass spectral data |
作者 | |
发表日期 | 2003 |
发表期刊 | Journal of Data Science
![]() |
ISSN/eISSN | 1680-743X |
卷号 | 1期号:4页码:391-404 |
摘要 | Boosting is a machine learning algorithm that is not well known in chemometrics. We apply boosting tree to the classification of mass spectral data. In the experiment, recognition of 15 chemical substructures from mass spectral data have been taken into account. The performance of boosting is very encouraging. Compared with previous result, boosting significantly improves the accuracy of classifiers based on mass spectra. |
关键词 | Boosting data mining decision tree mass spectra |
DOI | 10.6339/JDS.2003.01(4).173 |
URL | 查看来源 |
语种 | 英语English |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/5165 |
专题 | 个人在本单位外知识产出 |
作者单位 | 1.Laboratory for Chemometrics, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria 2.Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China 3.Sichuan University |
推荐引用方式 GB/T 7714 | Varmuza, K.,He, Ping,Fang, Kaitai. Boosting applied to classification of mass spectral data[J]. Journal of Data Science, 2003, 1(4): 391-404. |
APA | Varmuza, K., He, Ping, & Fang, Kaitai. (2003). Boosting applied to classification of mass spectral data. Journal of Data Science, 1(4), 391-404. |
MLA | Varmuza, K.,et al."Boosting applied to classification of mass spectral data". Journal of Data Science 1.4(2003): 391-404. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论