科研成果详情

发表状态已发表Published
题名Boosting applied to classification of mass spectral data
作者
发表日期2003
发表期刊Journal of Data Science
ISSN/eISSN1680-743X
卷号1期号:4页码:391-404
摘要

Boosting is a machine learning algorithm that is not well known in chemometrics. We apply boosting tree to the classification of mass spectral data. In the experiment, recognition of 15 chemical substructures from mass spectral data have been taken into account. The performance of boosting is very encouraging. Compared with previous result, boosting significantly improves the accuracy of classifiers based on mass spectra.

关键词Boosting data mining decision tree mass spectra
DOI10.6339/JDS.2003.01(4).173
URL查看来源
语种英语English
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/5165
专题个人在本单位外知识产出
作者单位
1.Laboratory for Chemometrics, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
2.Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P. R. China
3.Sichuan University
推荐引用方式
GB/T 7714
Varmuza, K.,He, Ping,Fang, Kaitai. Boosting applied to classification of mass spectral data[J]. Journal of Data Science, 2003, 1(4): 391-404.
APA Varmuza, K., He, Ping, & Fang, Kaitai. (2003). Boosting applied to classification of mass spectral data. Journal of Data Science, 1(4), 391-404.
MLA Varmuza, K.,et al."Boosting applied to classification of mass spectral data". Journal of Data Science 1.4(2003): 391-404.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Varmuza, K.]的文章
[He, Ping]的文章
[Fang, Kaitai]的文章
百度学术
百度学术中相似的文章
[Varmuza, K.]的文章
[He, Ping]的文章
[Fang, Kaitai]的文章
必应学术
必应学术中相似的文章
[Varmuza, K.]的文章
[He, Ping]的文章
[Fang, Kaitai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。