科研成果详情

发表状态已发表Published
题名A scalable surrogate L0 sparse regression method for generalized linear models with applications to large scale data
作者
发表日期2021-07-01
发表期刊Journal of Statistical Planning and Inference
ISSN/eISSN0378-3758
卷号213页码:262-281
摘要

This paper rigorously studies large sample properties of a surrogate L penalization method via iteratively performing reweighted L penalized regressions for generalized linear models and develop a scalable implementation of the method for sparse high dimensional massive sample size (sHDMSS) data. We show that for generalized linear models, the limit of the algorithm, referred to as the broken adaptive ridge (BAR) estimator, is consistent for variable selection, enjoys an oracle property for parameter estimation, and possesses a grouping property for highly correlated covariates. We further demonstrate that by taking advantage of an existing efficient implementation of massive L-penalized generalized linear models, the proposed BAR method can be conveniently implemented for sHDMSS data. An illustration is given using a large sHDMSS data from the Truven MarketScan Medicare (MDCR) database to investigate the safety of dabigatran versus warfarin for treatment of nonvalvular atrial filbrillation in elder patients.

关键词Generalized linear models High dimensional massive sample size data L0 penalty Ridge regression Variable selection
DOI10.1016/j.jspi.2020.12.001
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000617031900018
Scopus入藏号2-s2.0-85099210915
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/5996
专题理工科技学院
通讯作者Li, Gang
作者单位
1.Department of Medicine Statistics Core,University of California - Los Angeles,United States
2.Division of Science and Technology,Beijing Normal University - Hong Kong Baptist University United International College,Zhuhai,China
3.Division of Biostatistics and Epidemiology,Keck School of Medicine,University of Southern California,United States
4.Departments of Computational Medicine,Biostatistics and Human Genetics,University of California - Los Angeles,United States
5.Department of Biostatistics,University of California - Los Angeles,United States
推荐引用方式
GB/T 7714
Li, Ning,Peng, Xiaoling,Kawaguchi, Ericet al. A scalable surrogate L0 sparse regression method for generalized linear models with applications to large scale data[J]. Journal of Statistical Planning and Inference, 2021, 213: 262-281.
APA Li, Ning, Peng, Xiaoling, Kawaguchi, Eric, Suchard, Marc A., & Li, Gang. (2021). A scalable surrogate L0 sparse regression method for generalized linear models with applications to large scale data. Journal of Statistical Planning and Inference, 213, 262-281.
MLA Li, Ning,et al."A scalable surrogate L0 sparse regression method for generalized linear models with applications to large scale data". Journal of Statistical Planning and Inference 213(2021): 262-281.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Ning]的文章
[Peng, Xiaoling]的文章
[Kawaguchi, Eric]的文章
百度学术
百度学术中相似的文章
[Li, Ning]的文章
[Peng, Xiaoling]的文章
[Kawaguchi, Eric]的文章
必应学术
必应学术中相似的文章
[Li, Ning]的文章
[Peng, Xiaoling]的文章
[Kawaguchi, Eric]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。