科研成果详情

题名Basin of Attraction as a measure of robustness of an optimization algorithm
作者
发表日期2018-07-02
会议录名称ICNC-FSKD 2018 - 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery
页码133-137
摘要The concept of Basin of Attraction (BOA)from the theory of dynamical systems can be applied to evaluate the robustness of a deterministic optimization algorithm. For an objective function with many local minima, a large BOA with smooth boundaries associated with the global minimum is an important indicator for the robustness of the optimization algorithm. In this paper, numerical examples of BOA for canned commercial optimizer: fmincon in MATLAB's toolbox (Sequential Quadratic Programming, sqp, and Interior-Point Algorithm)are given as illustrations of how BOA can be used as a tool to compare the robustness of optimization algorithms. We also showed in an example of machine learning application, spurious local minima often appear with more training data are added, and these spurious local minima have nothing to do with the legitimate solution. Finally, three different types of quantitative measure of the robustness of an optimization algorithm based on the basin boundaries are proposed.
关键词Attractor Basin entropy Basin of attraction Dynamical system Fractal boundary Local and global minimum Optimization algorithm Training data Uncertainty exponent
DOI10.1109/FSKD.2018.8686850
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85064896766
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/6304
专题北师香港浸会大学
通讯作者Tsang,Ken K.T.
作者单位
Division of Science Technology,Statistics Program,BNU-HKBU United International College,Zhuhai,China
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Tsang,Ken K.T. Basin of Attraction as a measure of robustness of an optimization algorithm[C], 2018: 133-137.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Tsang,Ken K.T.]的文章
百度学术
百度学术中相似的文章
[Tsang,Ken K.T.]的文章
必应学术
必应学术中相似的文章
[Tsang,Ken K.T.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。