科研成果详情

题名Reduced analytic dependency modeling: Robust fusion for visual recognition
作者
发表日期2014
发表期刊International Journal of Computer Vision
ISSN/eISSN0920-5691
卷号109期号:3页码:233-251
摘要This paper addresses the robustness issue of information fusion for visual recognition. Analyzing limitations in existing fusion methods, we discover two key factors affecting the performance and robustness of a fusion model under different data distributions, namely (1) data dependency and (2) fusion assumption on posterior distribution. Considering these two factors, we develop a new framework to model dependency based on probabilistic properties of posteriors without any assumption on the data distribution. Making use of the range characteristics of posteriors, the fusion model is formulated as an analytic function multiplied by a constant with respect to the class label. With the analytic fusion model, we give an equivalent condition to the independent assumption and derive the dependency model from the marginal distribution property. Since the number of terms in the dependency model increases exponentially, the Reduced Analytic Dependency Model (RADM) is proposed based on the convergent property of analytic function. Finally, the optimal coefficients in the RADM are learned by incorporating label information from training data to minimize the empirical classification error under regularized least square criterion, which ensures the discriminative power. Experimental results from robust non-parametric statistical tests show that the proposed RADM method statistically significantly outperforms eight state-of-the-art score-level fusion methods on eight image/video datasets for different tasks of digit, flower, face, human action, object, and consumer video recognition. © 2014 Springer Science+Business Media New York.
关键词Dependency modeling Probabilistic constraints Robustness Score-level fusion Visual recognition
DOI10.1007/s11263-014-0723-7
URL查看来源
语种英语English
Scopus入藏号2-s2.0-84905653531
引用统计
被引频次:16[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/6518
专题北师香港浸会大学
作者单位
1.Department of Computer Science, Hong Kong Baptist University,Kowloon,Hong Kong
2.BNU-HKBU United International College,Zhuhai,China
推荐引用方式
GB/T 7714
Ma,Andy J.,Yuen,Pong C. Reduced analytic dependency modeling: Robust fusion for visual recognition[J]. International Journal of Computer Vision, 2014, 109(3): 233-251.
APA Ma,Andy J., & Yuen,Pong C. (2014). Reduced analytic dependency modeling: Robust fusion for visual recognition. International Journal of Computer Vision, 109(3), 233-251.
MLA Ma,Andy J.,et al."Reduced analytic dependency modeling: Robust fusion for visual recognition". International Journal of Computer Vision 109.3(2014): 233-251.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ma,Andy J.]的文章
[Yuen,Pong C.]的文章
百度学术
百度学术中相似的文章
[Ma,Andy J.]的文章
[Yuen,Pong C.]的文章
必应学术
必应学术中相似的文章
[Ma,Andy J.]的文章
[Yuen,Pong C.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。