发表状态 | 已发表Published |
题名 | On the anisotropic stable JCIR process |
作者 | |
发表日期 | 2020 |
发表期刊 | Alea (Rio de Janeiro)
![]() |
ISSN/eISSN | 1980-0436 |
卷号 | 17期号:2页码:643-674 |
摘要 | We investigate the anisotropic stable JCIR process which is a multidimensional extension of the stable JCIR process but also a multi-dimensional analogue of the classical JCIR process. We prove that the heat kernel of the anisotropic stable JCIR process exists and it satisfies an a-priori bound in a weighted anisotropic Besov norm. Based on this regularity result we deduce the strong Feller property and prove, for the subcritical case, exponential ergodicity in total variation. Also, we show that in the one-dimensional case the corresponding heat kernel is smooth. |
关键词 | Affine Process Anisotropic Besov Space Exponential Ergodicity Heat Kernel Stable JCIR Process Strong Feller Property |
DOI | 10.30757/ALEA.v17-25 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Statistics & Probability |
WOS记录号 | WOS:000604979900001 |
Scopus入藏号 | 2-s2.0-85098869230 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/7932 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Friesen, Martin |
作者单位 | 1.School of Mathematics and Natural Sciences, University of Wuppertal Gaußstraße 20, Wuppertal, 42119, Germany 2.Department of Mathematics, Shantou University, Shantou, 243 Daxue Road, Guangdong, 515063, China |
推荐引用方式 GB/T 7714 | Friesen, Martin,Jin, Peng. On the anisotropic stable JCIR process[J]. Alea (Rio de Janeiro), 2020, 17(2): 643-674. |
APA | Friesen, Martin, & Jin, Peng. (2020). On the anisotropic stable JCIR process. Alea (Rio de Janeiro), 17(2), 643-674. |
MLA | Friesen, Martin,et al."On the anisotropic stable JCIR process". Alea (Rio de Janeiro) 17.2(2020): 643-674. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Friesen, Martin]的文章 |
[Jin, Peng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Friesen, Martin]的文章 |
[Jin, Peng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Friesen, Martin]的文章 |
[Jin, Peng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论