发表状态 | 已发表Published |
题名 | Exponential ergodicity of an affine two-factor model based on the α-root process |
作者 | |
发表日期 | 2017-12-01 |
发表期刊 | Advances in Applied Probability
![]() |
ISSN/eISSN | 0001-8678 |
卷号 | 49期号:4页码:1144-1169 |
摘要 | We study an affine two-factor model introduced by Barczy et al. (2014). One component of this two-dimensional model is the so-called α-root process, which generalizes the well-known Cox-Ingersoll-Ross process. In the α = 2 case, this two-factor model was used by Chen and Joslin (2012) to price defaultable bonds with stochastic recovery rates. In this paper we prove exponential ergodicity of this two-factor model when α ϵ (1, 2). As a possible application, our result can be used to study the parameter estimation problem of the model. |
关键词 | Affine process exponential ergodicity Foster-Lyapunov function transition density α-root process |
DOI | 10.1017/apr.2017.37 |
URL | 查看来源 |
收录类别 | SCIE ; SSCI |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Statistics & Probability |
WOS记录号 | WOS:000416670400007 |
Scopus入藏号 | 2-s2.0-85044310784 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/7935 |
专题 | 个人在本单位外知识产出 |
作者单位 | Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Wuppertal, 42119, Germany |
推荐引用方式 GB/T 7714 | Jin, Peng,Kremer, Jonas,Rüdiger, Barbara. Exponential ergodicity of an affine two-factor model based on the α-root process[J]. Advances in Applied Probability, 2017, 49(4): 1144-1169. |
APA | Jin, Peng, Kremer, Jonas, & Rüdiger, Barbara. (2017). Exponential ergodicity of an affine two-factor model based on the α-root process. Advances in Applied Probability, 49(4), 1144-1169. |
MLA | Jin, Peng,et al."Exponential ergodicity of an affine two-factor model based on the α-root process". Advances in Applied Probability 49.4(2017): 1144-1169. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论