科研成果详情

发表状态已发表Published
题名Exponential ergodicity of an affine two-factor model based on the α-root process
作者
发表日期2017-12-01
发表期刊Advances in Applied Probability
ISSN/eISSN0001-8678
卷号49期号:4页码:1144-1169
摘要

We study an affine two-factor model introduced by Barczy et al. (2014). One component of this two-dimensional model is the so-called α-root process, which generalizes the well-known Cox-Ingersoll-Ross process. In the α = 2 case, this two-factor model was used by Chen and Joslin (2012) to price defaultable bonds with stochastic recovery rates. In this paper we prove exponential ergodicity of this two-factor model when α ϵ (1, 2). As a possible application, our result can be used to study the parameter estimation problem of the model.

关键词Affine process exponential ergodicity Foster-Lyapunov function transition density α-root process
DOI10.1017/apr.2017.37
URL查看来源
收录类别SCIE ; SSCI
语种英语English
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000416670400007
Scopus入藏号2-s2.0-85044310784
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/7935
专题个人在本单位外知识产出
作者单位
Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Wuppertal, 42119, Germany
推荐引用方式
GB/T 7714
Jin, Peng,Kremer, Jonas,Rüdiger, Barbara. Exponential ergodicity of an affine two-factor model based on the α-root process[J]. Advances in Applied Probability, 2017, 49(4): 1144-1169.
APA Jin, Peng, Kremer, Jonas, & Rüdiger, Barbara. (2017). Exponential ergodicity of an affine two-factor model based on the α-root process. Advances in Applied Probability, 49(4), 1144-1169.
MLA Jin, Peng,et al."Exponential ergodicity of an affine two-factor model based on the α-root process". Advances in Applied Probability 49.4(2017): 1144-1169.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jin, Peng]的文章
[Kremer, Jonas]的文章
[Rüdiger, Barbara]的文章
百度学术
百度学术中相似的文章
[Jin, Peng]的文章
[Kremer, Jonas]的文章
[Rüdiger, Barbara]的文章
必应学术
必应学术中相似的文章
[Jin, Peng]的文章
[Kremer, Jonas]的文章
[Rüdiger, Barbara]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。