发表状态 | 已发表Published |
题名 | Positive Harris recurrence and exponential ergodicity of the basic affine jump-diffusion |
作者 | |
发表日期 | 2016-01-02 |
发表期刊 | Stochastic Analysis and Applications
![]() |
ISSN/eISSN | 0736-2994 |
卷号 | 34期号:1页码:75-95 |
摘要 | In this article, we find the transition densities of the basic affine jump-diffusion (BAJD), which has been introduced by Duffie and Gârleanu as an extension of the CIR model with jumps. We prove the positive Harris recurrence and exponential ergodicity of the BAJD. Furthermore, we prove that the unique invariant probability measure π of the BAJD is absolutely continuous with respect to the Lebesgue measure and we also derive a closed-form formula for the density function of π. |
关键词 | Affine process basic affine jump-diffusion exponential ergodicity Harris recurrence stochastic differential equation |
DOI | 10.1080/07362994.2015.1105752 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied ; Statistics & Probability |
WOS记录号 | WOS:000367068900006 |
Scopus入藏号 | 2-s2.0-84951752966 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/7937 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Jin, Peng |
作者单位 | 1.Fachbereich C, Bergische Universität Wuppertal, Wuppertal, Germany 2.Department of Mathematics, University of Tunis El-Manar, Tunis, Tunisia |
推荐引用方式 GB/T 7714 | Jin, Peng,Rüdiger, Barbara,Trabelsi, Chiraz. Positive Harris recurrence and exponential ergodicity of the basic affine jump-diffusion[J]. Stochastic Analysis and Applications, 2016, 34(1): 75-95. |
APA | Jin, Peng, Rüdiger, Barbara, & Trabelsi, Chiraz. (2016). Positive Harris recurrence and exponential ergodicity of the basic affine jump-diffusion. Stochastic Analysis and Applications, 34(1), 75-95. |
MLA | Jin, Peng,et al."Positive Harris recurrence and exponential ergodicity of the basic affine jump-diffusion". Stochastic Analysis and Applications 34.1(2016): 75-95. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论