科研成果详情

发表状态已发表Published
题名Robust quasi-oracle semiparametric estimation of average causal effects
作者
发表日期2022
发表期刊Biostatistics and Epidemiology
ISSN/eISSN2470-9360
摘要

Causal effects estimation is one of the central problems in real clinical data analysis. Outcome regression and inverse probability weighting are two basic strategies to estimate causal effects in observational studies. The former suffers the problem of implicitly making extrapolation and the latter encounters the problem of volatility in the presence of extreme weights (some propensity score values are close to 0 or 1), which sometimes occurs in clinical data. In this work, we propose two asymptotically equivalent semiparametric estimators of average causal effects based on propensity score. The proposed approaches apply machine learning techniques to estimate propensity score and can circumvent the problem of model extrapolation. It is easy to implement and robust to extreme weights. The proposed estimators are shown to be consistent and asymptotically normal, and the asymptotic variances can also be estimated. In addition, the proposed estimators enjoy the property of quasi-oracle: the resulting estimators of average causal effects based on estimated propensity score are asymptotically indistinguishable from the estimators with true propensity score. Simulation studies and empirical applications further demonstrate the advantages of the proposed methods compared with competing ones.

关键词Average causal effects machine learning propensity score quasi-oracle semiparametric estimation
DOI10.1080/24709360.2022.2031808
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85126759645
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/8933
专题理工科技学院
作者单位
1.Beijing International Center for Mathematical Research,Peking University,Beijing,China
2.School of Statistics,Beijing Normal University,Beijing,China
3.Department of Statistics,BNU-HKBU United International College,Zhuhai,China
4.Department of Biostatistics,Peking University,Beijing,China
5.Pazhou Lab,Guangzhou,China
推荐引用方式
GB/T 7714
Wu, Peng,Tong, Xingwei,Wang, Yiet al. Robust quasi-oracle semiparametric estimation of average causal effects[J]. Biostatistics and Epidemiology, 2022.
APA Wu, Peng, Tong, Xingwei, Wang, Yi, Liang, Jiajuan, & Zhou, Xiaohua. (2022). Robust quasi-oracle semiparametric estimation of average causal effects. Biostatistics and Epidemiology.
MLA Wu, Peng,et al."Robust quasi-oracle semiparametric estimation of average causal effects". Biostatistics and Epidemiology (2022).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wu, Peng]的文章
[Tong, Xingwei]的文章
[Wang, Yi]的文章
百度学术
百度学术中相似的文章
[Wu, Peng]的文章
[Tong, Xingwei]的文章
[Wang, Yi]的文章
必应学术
必应学术中相似的文章
[Wu, Peng]的文章
[Tong, Xingwei]的文章
[Wang, Yi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。