发表状态 | 已发表Published |
题名 | Robust quasi-oracle semiparametric estimation of average causal effects |
作者 | |
发表日期 | 2022 |
发表期刊 | Biostatistics and Epidemiology
![]() |
ISSN/eISSN | 2470-9360 |
摘要 | Causal effects estimation is one of the central problems in real clinical data analysis. Outcome regression and inverse probability weighting are two basic strategies to estimate causal effects in observational studies. The former suffers the problem of implicitly making extrapolation and the latter encounters the problem of volatility in the presence of extreme weights (some propensity score values are close to 0 or 1), which sometimes occurs in clinical data. In this work, we propose two asymptotically equivalent semiparametric estimators of average causal effects based on propensity score. The proposed approaches apply machine learning techniques to estimate propensity score and can circumvent the problem of model extrapolation. It is easy to implement and robust to extreme weights. The proposed estimators are shown to be consistent and asymptotically normal, and the asymptotic variances can also be estimated. In addition, the proposed estimators enjoy the property of quasi-oracle: the resulting estimators of average causal effects based on estimated propensity score are asymptotically indistinguishable from the estimators with true propensity score. Simulation studies and empirical applications further demonstrate the advantages of the proposed methods compared with competing ones. |
关键词 | Average causal effects machine learning propensity score quasi-oracle semiparametric estimation |
DOI | 10.1080/24709360.2022.2031808 |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-85126759645 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/8933 |
专题 | 理工科技学院 |
作者单位 | 1.Beijing International Center for Mathematical Research,Peking University,Beijing,China 2.School of Statistics,Beijing Normal University,Beijing,China 3.Department of Statistics,BNU-HKBU United International College,Zhuhai,China 4.Department of Biostatistics,Peking University,Beijing,China 5.Pazhou Lab,Guangzhou,China |
推荐引用方式 GB/T 7714 | Wu, Peng,Tong, Xingwei,Wang, Yiet al. Robust quasi-oracle semiparametric estimation of average causal effects[J]. Biostatistics and Epidemiology, 2022. |
APA | Wu, Peng, Tong, Xingwei, Wang, Yi, Liang, Jiajuan, & Zhou, Xiaohua. (2022). Robust quasi-oracle semiparametric estimation of average causal effects. Biostatistics and Epidemiology. |
MLA | Wu, Peng,et al."Robust quasi-oracle semiparametric estimation of average causal effects". Biostatistics and Epidemiology (2022). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wu, Peng]的文章 |
[Tong, Xingwei]的文章 |
[Wang, Yi]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wu, Peng]的文章 |
[Tong, Xingwei]的文章 |
[Wang, Yi]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wu, Peng]的文章 |
[Tong, Xingwei]的文章 |
[Wang, Yi]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论