科研成果详情

发表状态已发表Published
题名Adaptive order WENO Reconstructions for the semi-lagrangian finite difference scheme for advection problem
作者
发表日期2021
发表期刊Communications in Computational Physics
ISSN/eISSN1815-2406
卷号30期号:1页码:67-96
摘要

We present a new conservative semi-Lagrangian finite difference weighted essentially non-oscillatory scheme with adaptive order. This is an extension of the conservative semi-Lagrangian (SL) finite difference WENO scheme in [Qiu and Shu, JCP, 230 (4) (2011), pp. 863-889], in which linear weights in SL WENO framework were shown to not exist for variable coefficient problems. Hence, the order of accuracy is not optimal from reconstruction stencils. In this paper, we incorporate a recent WENO adaptive order (AO) technique [Balsara et al., JCP, 326 (2016), pp. 780-804] to the SL WENO framework. The new scheme can achieve an optimal high order of accuracy, while maintaining the properties of mass conservation and non-oscillatory capture of solutions from the original SL WENO. The positivity-preserving limiter is further applied to ensure the positivity of solutions. Finally, the scheme is applied to high dimensional problems by a fourth-order dimensional splitting. We demonstrate the effectiveness of the new scheme by extensive numerical tests on linear advection equations, the Vlasov-Poisson system, the guiding center Vlasov model as well as the incompressible Euler equations.

关键词Finite difference Incompressible euler Mass conservation Semi-Lagrangian Vlasov-Poisson Weighted essentially nonoscillatory WENO adaptive order reconstruction
DOI10.4208/CICP.OA-2020-0073
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Physics
WOS类目Physics, Mathematical
WOS记录号WOS:000651618800003
Scopus入藏号2-s2.0-85106352570
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/8986
专题个人在本单位外知识产出
通讯作者Qiu, Jing-Mei
作者单位
1.Department of Mathematical Sciences,University of Delaware,Newark,19717,United States
2.School of Mathematical Sciences,Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing,Xiamen University,Xiamen, Fujian,361005,China
推荐引用方式
GB/T 7714
Chen, Jiajie,Cai, Xiaofeng,Qiu, Jianxianet al. Adaptive order WENO Reconstructions for the semi-lagrangian finite difference scheme for advection problem[J]. Communications in Computational Physics, 2021, 30(1): 67-96.
APA Chen, Jiajie, Cai, Xiaofeng, Qiu, Jianxian, & Qiu, Jing-Mei. (2021). Adaptive order WENO Reconstructions for the semi-lagrangian finite difference scheme for advection problem. Communications in Computational Physics, 30(1), 67-96.
MLA Chen, Jiajie,et al."Adaptive order WENO Reconstructions for the semi-lagrangian finite difference scheme for advection problem". Communications in Computational Physics 30.1(2021): 67-96.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Jiajie]的文章
[Cai, Xiaofeng]的文章
[Qiu, Jianxian]的文章
百度学术
百度学术中相似的文章
[Chen, Jiajie]的文章
[Cai, Xiaofeng]的文章
[Qiu, Jianxian]的文章
必应学术
必应学术中相似的文章
[Chen, Jiajie]的文章
[Cai, Xiaofeng]的文章
[Qiu, Jianxian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。