科研成果详情

发表状态已发表Published
题名An Energy Stable and Maximum Bound Preserving Scheme with Variable Time Steps for Time Fractional Allen--Cahn Equation
作者
发表日期2021
发表期刊SIAM Journal on Scientific Computing
ISSN/eISSN1064-8275
卷号43期号:5页码:A3503-A3526
摘要

In this work, we propose a Crank--Nicolson-type scheme with variable steps for the time fractional Allen--Cahn equation. The proposed scheme is shown to be unconditionally stable (in a variational energy sense) and is maximum bound preserving. Interestingly, the discrete energy stability result obtained in this paper can recover the classical energy dissipation law when the fractional order $\alpha \rightarrow 1$. That is, our scheme can asymptotically preserve the energy dissipation law in the $\alpha \rightarrow 1$ limit. This seems to be the first work on a variable time-stepping scheme that can preserve both the energy stability and the maximum bound principle. Our Crank--Nicolson scheme is built upon a reformulated problem associated with the Riemann--Liouville derivative. As a byproduct, we build up a reversible transformation between the L1-type formula of the Riemann--Liouville derivative and a new L1-type formula of the Caputo derivative with the help of a class of discrete orthogonal convolution kernels. This is the first time such a discrete transformation is established between two discrete fractional derivatives. We finally present several numerical examples with an adaptive time-stepping strategy to show the effectiveness of the proposed scheme.

关键词time-fractional Allen--Cahn equation asymptotic preserving energy stability maximum principle adaptive time stepping
DOI10.1137/20M1384105
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000712863700024
引用统计
被引频次:71[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9069
专题理工科技学院
通讯作者Zhou, Tao
作者单位
1.Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing211106, China
2.Department of Mathematics and International Center for Mathematics, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
3.Division of Science and Technology, BNU-HKBU United International College, Zhuhai, Guangdong Province, China
4.Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (NUAA), MIIT, Nanjing 211106, China
5.LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
推荐引用方式
GB/T 7714
Liao, Hong-lin,Tang, Tao,Zhou, Tao. An Energy Stable and Maximum Bound Preserving Scheme with Variable Time Steps for Time Fractional Allen--Cahn Equation[J]. SIAM Journal on Scientific Computing, 2021, 43(5): A3503-A3526.
APA Liao, Hong-lin, Tang, Tao, & Zhou, Tao. (2021). An Energy Stable and Maximum Bound Preserving Scheme with Variable Time Steps for Time Fractional Allen--Cahn Equation. SIAM Journal on Scientific Computing, 43(5), A3503-A3526.
MLA Liao, Hong-lin,et al."An Energy Stable and Maximum Bound Preserving Scheme with Variable Time Steps for Time Fractional Allen--Cahn Equation". SIAM Journal on Scientific Computing 43.5(2021): A3503-A3526.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liao, Hong-lin]的文章
[Tang, Tao]的文章
[Zhou, Tao]的文章
百度学术
百度学术中相似的文章
[Liao, Hong-lin]的文章
[Tang, Tao]的文章
[Zhou, Tao]的文章
必应学术
必应学术中相似的文章
[Liao, Hong-lin]的文章
[Tang, Tao]的文章
[Zhou, Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。