题名 | Sparse Matrix Selection for CSR-Based SpMV Using Deep Learning |
作者 | |
发表日期 | 2019-12-01 |
会议名称 | 5th IEEE International Conference on Computer and Communications |
会议录名称 | 2019 IEEE 5th International Conference on Computer and Communications, ICCC 2019
![]() |
页码 | 2097-2101 |
会议日期 | 6 December 2019~9 December 2019 |
会议地点 | Chengdu |
摘要 | CSR (Compressed Sparse Row) is the most popular and widely used sparse matrix representation format for Sparse Matrix-Vector Multiplication (SpMV), which is a key operation in many scientific and engineering applications. However, considering different matrix features and the given GPUs, CSR-based SpMV on some sparse matrices does not always have better performance than that of SpMV based on other sparse matrix formats. In this paper, we explore deep learning techniques and present a methodology to select the proper sparse matrices for CSR-based SpMV on NVIDIA GPUs. To address the challenge of this matrix selection problem, we convert it to a matrix classification problem, then address this classification problem by using the Convolutional Neural Networks (CNN). The effectiveness of our proposed methodology has been demonstrated by our experimental evaluations performed on NVIDIA GPUs. |
关键词 | Convolutional Neural Network (CNN) Deep Learning GPU SpMV |
DOI | 10.1109/ICCC47050.2019.9064309 |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-85084090423 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/9193 |
专题 | 个人在本单位外知识产出 |
作者单位 | 1.University of Illinois at Springfield,Department of Computer Science,Illinois,United States 2.Wenzhou-Kean University Wenzhou,Department of Computer Science,Zhejiang,China |
推荐引用方式 GB/T 7714 | Guo, Ping,Zhang, Changjiang. Sparse Matrix Selection for CSR-Based SpMV Using Deep Learning[C], 2019: 2097-2101. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Guo, Ping]的文章 |
[Zhang, Changjiang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Guo, Ping]的文章 |
[Zhang, Changjiang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Guo, Ping]的文章 |
[Zhang, Changjiang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论