科研成果详情

题名Performance prediction for csr-based SpMV on GPUs using machine learning
作者
发表日期2018-12-01
会议名称4th IEEE International Conference on Computer and Communications
会议录名称2018 IEEE 4th International Conference on Computer and Communications, ICCC 2018
页码1956-1960
会议日期7 December 2018 ~ 10 December 2018
会议地点Chengdu
摘要

Sparse matrix-vector multiplication (SpMV) is a critical operation and domains computing cost in a wide variety of real-world scientific and engineering applications. While many sparse storage formats and their computing kernels have been developed in recent years, CSR (Compressed Sparse Row) is still the most popular and widely used sparse storage format and CSR-Based SpMV usually has better performance for sparse matrices with large number of nonzero elements. This paper presents a performance prediction model built by using machine learning approach to accurately predict the execution time of GPU-accelerated SpMV using CSR kernel. The prediction accuracy of our proposed model is evaluated on a collection of fourteen sparse matrices. The results of our experiments performed on two different NVIDIA GPUs demonstrate the effectiveness of our proposed approach.

关键词CSR GPU Machine earning SpMV
DOI10.1109/CompComm.2018.8780598
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85070814962
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9198
专题个人在本单位外知识产出
作者单位
Department of Computer Science,University of Illinois at Springfield,Springfield,United States
推荐引用方式
GB/T 7714
Guo, Ping,Zhang, Changjiang. Performance prediction for csr-based SpMV on GPUs using machine learning[C], 2018: 1956-1960.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Guo, Ping]的文章
[Zhang, Changjiang]的文章
百度学术
百度学术中相似的文章
[Guo, Ping]的文章
[Zhang, Changjiang]的文章
必应学术
必应学术中相似的文章
[Guo, Ping]的文章
[Zhang, Changjiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。