题名 | Performance prediction for csr-based SpMV on GPUs using machine learning |
作者 | |
发表日期 | 2018-12-01 |
会议名称 | 4th IEEE International Conference on Computer and Communications |
会议录名称 | 2018 IEEE 4th International Conference on Computer and Communications, ICCC 2018
![]() |
页码 | 1956-1960 |
会议日期 | 7 December 2018 ~ 10 December 2018 |
会议地点 | Chengdu |
摘要 | Sparse matrix-vector multiplication (SpMV) is a critical operation and domains computing cost in a wide variety of real-world scientific and engineering applications. While many sparse storage formats and their computing kernels have been developed in recent years, CSR (Compressed Sparse Row) is still the most popular and widely used sparse storage format and CSR-Based SpMV usually has better performance for sparse matrices with large number of nonzero elements. This paper presents a performance prediction model built by using machine learning approach to accurately predict the execution time of GPU-accelerated SpMV using CSR kernel. The prediction accuracy of our proposed model is evaluated on a collection of fourteen sparse matrices. The results of our experiments performed on two different NVIDIA GPUs demonstrate the effectiveness of our proposed approach. |
关键词 | CSR GPU Machine earning SpMV |
DOI | 10.1109/CompComm.2018.8780598 |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-85070814962 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/9198 |
专题 | 个人在本单位外知识产出 |
作者单位 | Department of Computer Science,University of Illinois at Springfield,Springfield,United States |
推荐引用方式 GB/T 7714 | Guo, Ping,Zhang, Changjiang. Performance prediction for csr-based SpMV on GPUs using machine learning[C], 2018: 1956-1960. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Guo, Ping]的文章 |
[Zhang, Changjiang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Guo, Ping]的文章 |
[Zhang, Changjiang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Guo, Ping]的文章 |
[Zhang, Changjiang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论