科研成果详情

题名Multi-GPU implementation and performance optimization for CSR-based sparse matrix-vector multiplication
作者
发表日期2018-03-22
会议名称3rd IEEE International Conference on Computer and Communications, ICCC 2017
会议录名称2017 3rd IEEE International Conference on Computer and Communications, ICCC 2017
卷号2018-January
页码2419-2423
会议日期13 December 2017 到 16 December 2017
会议地点Chengdu
摘要

Sparse matrix-vector multiplication (SpMV) is a critical operation in scientific computing and engineering applications. CSR (Compressed Sparse Row) is the most popular sparse storage format and CSR-Based SpMV usually has good performance on sparse matrices with large number of non-zero elements. This paper presents our Multi-GPU SpMV implementation to improve CSR-Based SpMV performance. We make use of multiple GPUs to jointly complete SpMV computations and adopt streamed approach to increase concurrency to further improve SpMV performance. We evaluate performance of our Multi-GPU SpMV on a collection of fourteen sparse matrices and demonstrate the effectiveness of our proposed approach in performance improvement on a large-scale cluster. The average speedup achieved from our experiments is 6.68.

关键词CSR multi-GPU SpMV
DOI10.1109/CompComm.2017.8322969
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85049749394
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9203
专题个人在本单位外知识产出
作者单位
1.Department of Computer Science,University of Illinois at Springfield,Springfield,United States
2.Department of Computer Science,Wenzhou-Kean University,Wenzhou, Zhejiang,China
推荐引用方式
GB/T 7714
Guo, Ping,Zhang, Changjiang. Multi-GPU implementation and performance optimization for CSR-based sparse matrix-vector multiplication[C], 2018: 2419-2423.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Guo, Ping]的文章
[Zhang, Changjiang]的文章
百度学术
百度学术中相似的文章
[Guo, Ping]的文章
[Zhang, Changjiang]的文章
必应学术
必应学术中相似的文章
[Guo, Ping]的文章
[Zhang, Changjiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。