题名 | Multi-GPU implementation and performance optimization for CSR-based sparse matrix-vector multiplication |
作者 | |
发表日期 | 2018-03-22 |
会议名称 | 3rd IEEE International Conference on Computer and Communications, ICCC 2017 |
会议录名称 | 2017 3rd IEEE International Conference on Computer and Communications, ICCC 2017
![]() |
卷号 | 2018-January |
页码 | 2419-2423 |
会议日期 | 13 December 2017 到 16 December 2017 |
会议地点 | Chengdu |
摘要 | Sparse matrix-vector multiplication (SpMV) is a critical operation in scientific computing and engineering applications. CSR (Compressed Sparse Row) is the most popular sparse storage format and CSR-Based SpMV usually has good performance on sparse matrices with large number of non-zero elements. This paper presents our Multi-GPU SpMV implementation to improve CSR-Based SpMV performance. We make use of multiple GPUs to jointly complete SpMV computations and adopt streamed approach to increase concurrency to further improve SpMV performance. We evaluate performance of our Multi-GPU SpMV on a collection of fourteen sparse matrices and demonstrate the effectiveness of our proposed approach in performance improvement on a large-scale cluster. The average speedup achieved from our experiments is 6.68. |
关键词 | CSR multi-GPU SpMV |
DOI | 10.1109/CompComm.2017.8322969 |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-85049749394 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/9203 |
专题 | 个人在本单位外知识产出 |
作者单位 | 1.Department of Computer Science,University of Illinois at Springfield,Springfield,United States 2.Department of Computer Science,Wenzhou-Kean University,Wenzhou, Zhejiang,China |
推荐引用方式 GB/T 7714 | Guo, Ping,Zhang, Changjiang. Multi-GPU implementation and performance optimization for CSR-based sparse matrix-vector multiplication[C], 2018: 2419-2423. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Guo, Ping]的文章 |
[Zhang, Changjiang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Guo, Ping]的文章 |
[Zhang, Changjiang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Guo, Ping]的文章 |
[Zhang, Changjiang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论