科研成果详情

发表状态已发表Published
题名New recommended designs for screening either qualitative or quantitative factors
作者
发表日期2021-02-01
发表期刊Statistical Papers
ISSN/eISSN0932-5026
卷号62期号:1页码:267-307
摘要

By the affine resolvable design theory, there are 68 non-isomorphic classes of symmetric orthogonal designs involving 13 factors with 3 levels and 27 runs. This paper gives a comprehensive study of all these 68 non-isomorphic classes from the viewpoint of the uniformity criteria, generalized word-length pattern and Hamming distance pattern, which provides some interesting projection and level permutation behaviors of these classes. Selecting best projected level permuted subdesigns with 3 ≤ k≤ 13 factors from all these 68 non-isomorphic classes is discussed via these three criteria with catalogues of best values. New recommended uniform minimum aberration and minimum Hamming distance designs are given for investigating either qualitative or quantitative 4 ≤ k≤ 13 factors, which perform better than the existing recommended designs in literature and the existing uniform designs. A new efficient technique for detecting non-isomorphic designs is given via these three criteria. By using this new approach, in all projections into 1 ≤ k≤ 13 factors we classify each class from these 68 classes to non-isomorphic subclasses and give the number of isomorphic designs in each subclass. Close relationships among these three criteria and lower bounds of the average uniformity criteria are given as benchmarks for selecting best designs.

关键词Design isomorphism Generalized word-length pattern Hamming distance pattern Level permutation Orthogonal designs Projection Uniformity criteria
DOI10.1007/s00362-019-01089-9
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000621543200013
Scopus入藏号2-s2.0-85061340958
引用统计
被引频次:20[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/951
专题理工科技学院
通讯作者Fang, Kaitai
作者单位
1.Department of Mathematics,Faculty of Science,Zagazig University,Zagazig,44519,Egypt
2.Division of Science and Technology,BNU-HKBU United International College,Zhuhai,519085,China
3.The Key Lab of Random Complex Structures and Data Analysis,The Chinese Academy of Sciences,Beijing,China
4.Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
5.Department of Mathematics,Hong Kong Baptist University,Kowloon Tong,Hong Kong
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Elsawah, A. M.,Fang, Kaitai,Ke, Xiao. New recommended designs for screening either qualitative or quantitative factors[J]. Statistical Papers, 2021, 62(1): 267-307.
APA Elsawah, A. M., Fang, Kaitai, & Ke, Xiao. (2021). New recommended designs for screening either qualitative or quantitative factors. Statistical Papers, 62(1), 267-307.
MLA Elsawah, A. M.,et al."New recommended designs for screening either qualitative or quantitative factors". Statistical Papers 62.1(2021): 267-307.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Elsawah, A. M.]的文章
[Fang, Kaitai]的文章
[Ke, Xiao]的文章
百度学术
百度学术中相似的文章
[Elsawah, A. M.]的文章
[Fang, Kaitai]的文章
[Ke, Xiao]的文章
必应学术
必应学术中相似的文章
[Elsawah, A. M.]的文章
[Fang, Kaitai]的文章
[Ke, Xiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。