发表状态 | 已发表Published |
题名 | Fast and Stable Multivariate Kernel Density Estimation by Fast Sum Updating |
作者 | |
发表日期 | 2019-07-03 |
发表期刊 | Journal of Computational and Graphical Statistics
![]() |
ISSN/eISSN | 1061-8600 |
卷号 | 28期号:3页码:596-608 |
摘要 | Kernel density estimation and kernel regression are powerful but computationally expensive techniques: a direct evaluation of kernel density estimates at M evaluation points given N input sample points requires a quadratic O(MN) operations, which is prohibitive for large scale problems. For this reason, approximate methods such as binning with fast Fourier transform or the fast Gauss transform have been proposed to speed up kernel density estimation. Among these fast methods, the fast sum updating approach is an attractive alternative, as it is an exact method and its speed is independent of the input sample and the bandwidth. Unfortunately, this method, based on data sorting, has for the most part been limited to the univariate case. In this article, we revisit the fast sum updating approach and extend it in several ways. Our main contribution is to extend it to the general multivariate case for general input data and rectilinear evaluation grid. Other contributions include its extension to a wider class of kernels, including the triangular, cosine, and Silverman kernels, its combination with parsimonious additive multivariate kernels, and its combination with a fast approximate k-nearest-neighbors bandwidth for multivariate datasets. Our numerical tests confirm the speed, accuracy, and stability of the method. |
关键词 | Adaptive bandwidth Balloon bandwidth Fast convolution Fast k-nearest-neighbor Fast kernel regression Fast kernel summation |
DOI | 10.1080/10618600.2018.1549052 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Statistics & Probability |
WOS记录号 | WOS:000486201600009 |
Scopus入藏号 | 2-s2.0-85061571306 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/9650 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Langrené,Nicolas |
作者单位 | 1.CSIRO Data61,RiskLab Australia,Melbourne,Australia 2.EDF R&D,FiME (Laboratoire de Finance des Marchés de l’Énergie),Clamart,France |
推荐引用方式 GB/T 7714 | Langrené,Nicolas,Warin,Xavier. Fast and Stable Multivariate Kernel Density Estimation by Fast Sum Updating[J]. Journal of Computational and Graphical Statistics, 2019, 28(3): 596-608. |
APA | Langrené,Nicolas, & Warin,Xavier. (2019). Fast and Stable Multivariate Kernel Density Estimation by Fast Sum Updating. Journal of Computational and Graphical Statistics, 28(3), 596-608. |
MLA | Langrené,Nicolas,et al."Fast and Stable Multivariate Kernel Density Estimation by Fast Sum Updating". Journal of Computational and Graphical Statistics 28.3(2019): 596-608. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Langrené,Nicolas]的文章 |
[Warin,Xavier]的文章 |
百度学术 |
百度学术中相似的文章 |
[Langrené,Nicolas]的文章 |
[Warin,Xavier]的文章 |
必应学术 |
必应学术中相似的文章 |
[Langrené,Nicolas]的文章 |
[Warin,Xavier]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论