科研成果详情

题名Learning from Crowds via Joint Probabilistic Matrix Factorization and Clustering in Latent Space
作者
发表日期2021
会议名称European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)
会议录名称Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN0302-9743
卷号12460 LNAI
页码546-561
会议日期SEP 14-18, 2020
会议地点ELECTR NETWORK
摘要

Learning from noisy labels is getting trendy in the era of big data. However, in crowdsourcing practice, it is still a challenging task to extract ground truth labels from noisy labels obtained from crowds. In this paper, we propose a latent variable model built on probabilistic logistic matrix factorization model and classical Gaussian mixture model for inferring ground truth labels from noisy, crowdsourced ones. The proposed model incorporates item heterogeneity in contrast to previous works and allows for vector space embeddings of both items and worker labels. Moreover, we derive a tractable mean-field variational inference algorithm to approximate the model posterior. Meanwhile, related MAP approximation problem to the model posterior is also investigated to identify links to existing works. Empirically, we demonstrate that the proposed method achieves good inference accuracy while preserving meaningful uncertainty measures in the embeddings, and therefore better reflects the intrinsic structure of data.

关键词Crowdsourcing Label aggregation Latent variable models Variational inference
DOI10.1007/978-3-030-67667-4_33
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications
WOS记录号WOS:000718580000033
Scopus入藏号2-s2.0-85103273956
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9763
专题个人在本单位外知识产出
通讯作者Yao, Wuguannan
作者单位
1.Department of Mathematics,City University of Hong Kong,Kowloon,Hong Kong
2.School of Data Science,City University of Hong Kong,Kowloon,Hong Kong
推荐引用方式
GB/T 7714
Yao, Wuguannan,Lee, Wonjung,Wang, Junhui. Learning from Crowds via Joint Probabilistic Matrix Factorization and Clustering in Latent Space[C], 2021: 546-561.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yao, Wuguannan]的文章
[Lee, Wonjung]的文章
[Wang, Junhui]的文章
百度学术
百度学术中相似的文章
[Yao, Wuguannan]的文章
[Lee, Wonjung]的文章
[Wang, Junhui]的文章
必应学术
必应学术中相似的文章
[Yao, Wuguannan]的文章
[Lee, Wonjung]的文章
[Wang, Junhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。