科研成果详情

发表状态已发表Published
题名A novel reduced model for a linearized anisotropic rod with doubly symmetric a cross-section: I. Theory
作者
发表日期2022-08-01
发表期刊Mathematics and Mechanics of Solids
ISSN/eISSN1081-2865
卷号27期号:8页码:1455-1479
摘要

A novel reduced model is constructed for a linearized anisotropic rod with doubly symmetric cross-section. The derivation starts from the Taylor expansion of the displacement vector and the stress tensor. The goal is to establish rod equations for the leading order displacement and the twist angle of the mean line of the rod in an asymptotically consistent way. Fifteen vector differential equations are derived from the 3D (three-dimensional) governing system, and elaborate manipulations between these equations (including the Fourier series expansion of the lateral traction condition) lead to four scalar rod equations: two bending equations, one twisting equation, and one stretching equation. Also, recursive relations are established between the higher order coefficients and the lower order ones, which eliminate most of the unknowns. Six boundary conditions at each edge are obtained from the 3D virtual work principle, and 1D (one-dimensional) virtual work principle is also developed. The rod model has three features: it adopts no ad hoc assumptions for the displacement form and the scalings of the external loadings; it incorporates the bending, twisting, and stretching effects in one uniform framework; and it satisfies the 3D governing system in a point-wise manner.

关键词anisotropic linearized elasticity Fourier series Optimized rod theory reduction method rod variational formulation
DOI10.1177/10812865221094507
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Materials Science ; Mathematics ; Mechanics
WOS类目Materials Science, Multidisciplinary ; Mathematics, Interdisciplinary Applications ; Mechanics
WOS记录号WOS:000810810400001
Scopus入藏号2-s2.0-85131368747
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/9814
专题理工科技学院
通讯作者Chen, Xiaoyi
作者单位
1.Université et Unité de Mécanique de Lille EA 7512,Villeneuve d’Ascq,France
2.Division of Science and Technology,BNU-HKBU United International College,Zhuhai,China
3.Department of Mathematics and Department of Materials Science and Engineering,City University of Hong Kong,Kowloon,Hong Kong
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Pruchnicki, Erick,Chen, Xiaoyi,Dai, Huihui. A novel reduced model for a linearized anisotropic rod with doubly symmetric a cross-section: I. Theory[J]. Mathematics and Mechanics of Solids, 2022, 27(8): 1455-1479.
APA Pruchnicki, Erick, Chen, Xiaoyi, & Dai, Huihui. (2022). A novel reduced model for a linearized anisotropic rod with doubly symmetric a cross-section: I. Theory. Mathematics and Mechanics of Solids, 27(8), 1455-1479.
MLA Pruchnicki, Erick,et al."A novel reduced model for a linearized anisotropic rod with doubly symmetric a cross-section: I. Theory". Mathematics and Mechanics of Solids 27.8(2022): 1455-1479.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Pruchnicki, Erick]的文章
[Chen, Xiaoyi]的文章
[Dai, Huihui]的文章
百度学术
百度学术中相似的文章
[Pruchnicki, Erick]的文章
[Chen, Xiaoyi]的文章
[Dai, Huihui]的文章
必应学术
必应学术中相似的文章
[Pruchnicki, Erick]的文章
[Chen, Xiaoyi]的文章
[Dai, Huihui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。