科研成果详情

发表状态已发表Published
题名WEAK DISCRETE MAXIMUM PRINCIPLE OF ISOPARAMETRIC FINITE ELEMENT METHODS IN CURVILINEAR POLYHEDRA
作者
发表日期2024
发表期刊Mathematics of Computation
ISSN/eISSN0025-5718
卷号93期号:345页码:1-34
摘要

The weak maximum principle of the isoparametric finite element method is proved for the Poisson equation under the Dirichlet boundary condition in a (possibly concave) curvilinear polyhedral domain with edge openings smaller than π, which include smooth domains and smooth deformations of convex polyhedra. The proof relies on the analysis of a dual elliptic problem with a discontinuous coefficient matrix arising from the isoparametric finite elements. Therefore, the standard H elliptic regularity which is required in the proof of the weak maximum principle in the literature does not hold for this dual problem. To overcome this difficulty, we have decomposed the solution into a smooth part and a nonsmooth part, and estimated the two parts by H and W estimates, respectively. As an application of the weak maximum principle, we have proved a maximum-norm best approximation property of the isoparametric finite element method for the Poisson equation in a curvilinear polyhedron. The proof contains non-trivial modifications of Schatz’s argument due to the nonconformity of the iso-parametric finite elements, which requires us to construct a globally smooth flow map which maps the curvilinear polyhedron to a perturbed larger domain on which we can establish the Wregularity estimate of the Poisson equation uniformly with respect to the perturbation.

DOI10.1090/mcom/3876
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:001045260000001
Scopus入藏号2-s2.0-85174968972
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11071
专题北师香港浸会大学
通讯作者Xie, Yupei
作者单位
1.Department of Applied Mathematics,The Hong Kong Polytechnic University,Hung Hom,Hong Kong
2.Department of Mathematics,City University of Hong Kong,Hung Hom,Hong Kong
3.Division of Science and Technology,United International College (BNU-HKBU),Zhuhai,519087,China
推荐引用方式
GB/T 7714
Li, Buyang,Qiu, Weifeng,Xie, Yupeiet al. WEAK DISCRETE MAXIMUM PRINCIPLE OF ISOPARAMETRIC FINITE ELEMENT METHODS IN CURVILINEAR POLYHEDRA[J]. Mathematics of Computation, 2024, 93(345): 1-34.
APA Li, Buyang, Qiu, Weifeng, Xie, Yupei, & Yu, Wenshan. (2024). WEAK DISCRETE MAXIMUM PRINCIPLE OF ISOPARAMETRIC FINITE ELEMENT METHODS IN CURVILINEAR POLYHEDRA. Mathematics of Computation, 93(345), 1-34.
MLA Li, Buyang,et al."WEAK DISCRETE MAXIMUM PRINCIPLE OF ISOPARAMETRIC FINITE ELEMENT METHODS IN CURVILINEAR POLYHEDRA". Mathematics of Computation 93.345(2024): 1-34.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Buyang]的文章
[Qiu, Weifeng]的文章
[Xie, Yupei]的文章
百度学术
百度学术中相似的文章
[Li, Buyang]的文章
[Qiu, Weifeng]的文章
[Xie, Yupei]的文章
必应学术
必应学术中相似的文章
[Li, Buyang]的文章
[Qiu, Weifeng]的文章
[Xie, Yupei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。