题名 | Motion Planning for Autonomous Driving: The State of the Art and Future Perspectives |
作者 | |
发表日期 | 2023-06-01 |
发表期刊 | IEEE Transactions on Intelligent Vehicles
![]() |
卷号 | 8期号:6页码:3692-3711 |
摘要 | Intelligent vehicles (IVs) have gained worldwide attention due to their increased convenience, safety advantages, and potential commercial value. Despite predictions of commercial deployment by 2025, implementation remains limited to small-scale validation, with precise tracking controllers and motion planners being essential prerequisites for IVs. This article reviews state-of-the-art motion planning methods for IVs, including pipeline planning and end-to-end planning methods. The study examines the selection, expansion, and optimization operations in a pipeline method, while it investigates training approaches and validation scenarios for driving tasks in end-to-end methods. Experimental platforms are reviewed to assist readers in choosing suitable training and validation strategies. A side-by-side comparison of the methods is provided to highlight their strengths and limitations, aiding system-level design choices. Current challenges and future perspectives are also discussed in this survey. |
关键词 | end-to-end planning imitation learning Motion planning parallel learning pipeline planning reinforcement learning |
DOI | 10.1109/TIV.2023.3274536 |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-85159838341 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/11581 |
专题 | 北师香港浸会大学 |
通讯作者 | Xuanyuan,Zhe |
作者单位 | 1.BNU-HKBU United International College,Guangdong Provincial Key Lab of IRADS,Zhuhai,519087,China 2.Hong Kong Baptist University,Kowloon,999077,Hong Kong 3.Hubei University,School of Computer Science and Information Engineering,Wuhan,430062,China 4.State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Changsha,410082,China 5.Hunan University,College of Mechanical and Vehicle Engineering,Changsha,410082,China 6.University of Chinese Academy of Sciences,Beijing,100049,China 7.Jinan University,School of Public Management/Emergency Management,Guangzhou,510632,China 8.Indiana University-Purdue University Indianapolis,Purdue School of Engineering and Technology,Indianapolis,46202,United States 9.Chinese Academy of Sciences,Institute of Automation,Beijing,100190,China 10.Waytous Ltd.,China |
第一作者单位 | 北师香港浸会大学 |
通讯作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Teng,Siyu,Hu,Xuemin,Deng,Penget al. Motion Planning for Autonomous Driving: The State of the Art and Future Perspectives[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(6): 3692-3711. |
APA | Teng,Siyu., Hu,Xuemin., Deng,Peng., Li,Bai., Li,Yuchen., .. & Chen,Long. (2023). Motion Planning for Autonomous Driving: The State of the Art and Future Perspectives. IEEE Transactions on Intelligent Vehicles, 8(6), 3692-3711. |
MLA | Teng,Siyu,et al."Motion Planning for Autonomous Driving: The State of the Art and Future Perspectives". IEEE Transactions on Intelligent Vehicles 8.6(2023): 3692-3711. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Teng,Siyu]的文章 |
[Hu,Xuemin]的文章 |
[Deng,Peng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Teng,Siyu]的文章 |
[Hu,Xuemin]的文章 |
[Deng,Peng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Teng,Siyu]的文章 |
[Hu,Xuemin]的文章 |
[Deng,Peng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论