科研成果详情

题名Motion Planning for Autonomous Driving: The State of the Art and Future Perspectives
作者
发表日期2023-06-01
发表期刊IEEE Transactions on Intelligent Vehicles
卷号8期号:6页码:3692-3711
摘要Intelligent vehicles (IVs) have gained worldwide attention due to their increased convenience, safety advantages, and potential commercial value. Despite predictions of commercial deployment by 2025, implementation remains limited to small-scale validation, with precise tracking controllers and motion planners being essential prerequisites for IVs. This article reviews state-of-the-art motion planning methods for IVs, including pipeline planning and end-to-end planning methods. The study examines the selection, expansion, and optimization operations in a pipeline method, while it investigates training approaches and validation scenarios for driving tasks in end-to-end methods. Experimental platforms are reviewed to assist readers in choosing suitable training and validation strategies. A side-by-side comparison of the methods is provided to highlight their strengths and limitations, aiding system-level design choices. Current challenges and future perspectives are also discussed in this survey.
关键词end-to-end planning imitation learning Motion planning parallel learning pipeline planning reinforcement learning
DOI10.1109/TIV.2023.3274536
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85159838341
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11581
专题北师香港浸会大学
通讯作者Xuanyuan,Zhe
作者单位
1.BNU-HKBU United International College,Guangdong Provincial Key Lab of IRADS,Zhuhai,519087,China
2.Hong Kong Baptist University,Kowloon,999077,Hong Kong
3.Hubei University,School of Computer Science and Information Engineering,Wuhan,430062,China
4.State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Changsha,410082,China
5.Hunan University,College of Mechanical and Vehicle Engineering,Changsha,410082,China
6.University of Chinese Academy of Sciences,Beijing,100049,China
7.Jinan University,School of Public Management/Emergency Management,Guangzhou,510632,China
8.Indiana University-Purdue University Indianapolis,Purdue School of Engineering and Technology,Indianapolis,46202,United States
9.Chinese Academy of Sciences,Institute of Automation,Beijing,100190,China
10.Waytous Ltd.,China
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Teng,Siyu,Hu,Xuemin,Deng,Penget al. Motion Planning for Autonomous Driving: The State of the Art and Future Perspectives[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(6): 3692-3711.
APA Teng,Siyu., Hu,Xuemin., Deng,Peng., Li,Bai., Li,Yuchen., .. & Chen,Long. (2023). Motion Planning for Autonomous Driving: The State of the Art and Future Perspectives. IEEE Transactions on Intelligent Vehicles, 8(6), 3692-3711.
MLA Teng,Siyu,et al."Motion Planning for Autonomous Driving: The State of the Art and Future Perspectives". IEEE Transactions on Intelligent Vehicles 8.6(2023): 3692-3711.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Teng,Siyu]的文章
[Hu,Xuemin]的文章
[Deng,Peng]的文章
百度学术
百度学术中相似的文章
[Teng,Siyu]的文章
[Hu,Xuemin]的文章
[Deng,Peng]的文章
必应学术
必应学术中相似的文章
[Teng,Siyu]的文章
[Hu,Xuemin]的文章
[Deng,Peng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。