Status | 已发表Published |
Title | Constructing optimal projection designs |
Creator | |
Date Issued | 2019-11-02 |
Source Publication | Statistics
![]() |
ISSN | 0233-1888 |
Volume | 53Issue:6Pages:1357-1385 |
Abstract | The early stages of many real-life experiments involve a large number of factors among which only a few factors are active. Unfortunately, the optimal full-dimensional designs of those early stages may have bad low-dimensional projections and the experimenters do not know which factors turn out to be important before conducting the experiment. Therefore, designs with good projections are desirable for factor screening. In this regard, significant questions are arising such as whether the optimal full-dimensional designs have good projections onto low dimensions? How experimenters can measure the goodness of a full-dimensional design by focusing on all of its projections?, and are there linkages between the optimality of a full-dimensional design and the optimality of its projections? Through theoretical justifications, this paper tries to provide answers to these interesting questions by investigating the construction of optimal (average) projection designs for screening either nominal or quantitative factors. The main results show that: based on the aberration and orthogonality criteria the full-dimensional design is optimal if and only if it is optimal projection design; the full-dimensional design is optimal via the aberration and orthogonality if and only if it is uniform projection design; there is no guarantee that a uniform full-dimensional design is optimal projection design via any criterion; the projection design is optimal via the aberration, orthogonality and uniformity criteria if it is optimal via any criterion of them; and the saturated orthogonal designs have the same average projection performance. |
Keyword | aberration Hamming distance level permutations moment aberration optimal projection designs orthogonality Projection uniformity |
DOI | 10.1080/02331888.2019.1688816 |
URL | View source |
Indexed By | SCIE |
WOS Research Area | Mathematics |
WOS Subject | Statistics & Probability |
WOS ID | WOS:000495821200001 |
Scopus ID | 2-s2.0-85075028816 |
Citation statistics | |
Document Type | Journal article |
Identifier | http://repository.uic.edu.cn/handle/39GCC9TT/1159 |
Collection | Faculty of Science and Technology |
Corresponding Author | Elsawah, A. M. |
Affiliation | 1.Division of Science and Technology, BNU-HKBU United International College, Zhuhai, China 2.Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt 3.School of Mathematical Sciences, Soochow University, Suzhou, China 4.The Key Lab of Random Complex Structures and Data Analysis, The Chinese Academy of Sciences, Beijing, China |
First Author Affilication | Beijing Normal-Hong Kong Baptist University |
Corresponding Author Affilication | Beijing Normal-Hong Kong Baptist University |
Recommended Citation GB/T 7714 | Elsawah, A. M.,Tang, Yu,Fang, Kaitai. Constructing optimal projection designs[J]. Statistics, 2019, 53(6): 1357-1385. |
APA | Elsawah, A. M., Tang, Yu, & Fang, Kaitai. (2019). Constructing optimal projection designs. Statistics, 53(6), 1357-1385. |
MLA | Elsawah, A. M.,et al."Constructing optimal projection designs". Statistics 53.6(2019): 1357-1385. |
Files in This Item: | Download All | |||||
File Name/Size | DocType | Version | Access | License | ||
Elsawah-2019-Constru(2385KB) | Journal article | Published draft | Open Access | CC BY-NC-SA | View Download |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment