科研成果详情

发表状态已发表Published
题名Recursive hierarchical parametric identification of Wiener-Hammerstein systems based on initial value optimization
作者
发表日期2025-03-01
发表期刊ISA Transactions
ISSN/eISSN0019-0578
卷号158页码:697-714
摘要

In this paper, a novel recursive hierarchical parametric identification method based on initial value optimization is proposed for Wiener-Hammerstein systems subject to stochastic measurement noise. By transforming the traditional Wiener-Hammerstein system model into a generalized form, the system model parameters are uniquely expressed for estimation. To avoid cross-coupling between estimating block-oriented model parameters, a hierarchical identification algorithm is presented by dividing the parameter vector into two subvectors containing the coupled and uncoupled terms for estimation, respectively. To guarantee consistent estimation on these parameters, an auxiliary block model is designed to predict the inner unmeasurable variables of the Wiener-Hammerstein system for computational iteration. Furthermore, two adaptive forgetting factors are designed to accelerate the convergence rates on estimating both coupled and uncoupled parameters. To overcome the issue of initial value sensitivity involved with the traditional recursive least-squares based algorithms for parameter estimation, a particle swarm optimization (PSO) algorithm based on two different excitation signals is given for initial value optimization of the proposed recursive identification algorithm. Meanwhile, the convergence property of the proposed algorithm is clarified with a proof. Finally, an illustrative example and experiments on a micro-positioning stage are performed to validate the merit of the proposed method.

关键词Adaptive forgetting factors Auxiliary model Initial value optimization Recursive hierarchical least-squares Wiener-Hammerstein system
DOI10.1016/j.isatra.2025.01.025
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Automation & Control Systems ; EngineeringInstruments & Instrumentation
WOS类目Automation & Control Systems ; Engineering, Multidisciplinary ; Instruments & Instrumentation
WOS记录号WOS:001445238400001
Scopus入藏号2-s2.0-86000433566
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/12821
专题理工科技学院
通讯作者Liu, Tao
作者单位
1.Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education,Dalian University of Technology,Dalian,116024,China
2.School of Control Science and Engineering,Dalian University of Technology,Dalian,116024,China
3.Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming,650500,China
4.Department of Automation,Tsinghua University,Beijing,100084,China
5.College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai,200234,China
6.Institute of Artificial Intelligence and Future Networks,Beijing Normal University at Zhuhai,Zhuhai,China
7.BNU-HKBU United International College Tangjiawan,Zhuhai,Rd. JinTong 2000#,China
推荐引用方式
GB/T 7714
Li, Qiangya,Liu, Tao,Na, Jinget al. Recursive hierarchical parametric identification of Wiener-Hammerstein systems based on initial value optimization[J]. ISA Transactions, 2025, 158: 697-714.
APA Li, Qiangya, Liu, Tao, Na, Jing, Shang, Chao, Tan, Yonghong, & Wang, Qing Guo. (2025). Recursive hierarchical parametric identification of Wiener-Hammerstein systems based on initial value optimization. ISA Transactions, 158, 697-714.
MLA Li, Qiangya,et al."Recursive hierarchical parametric identification of Wiener-Hammerstein systems based on initial value optimization". ISA Transactions 158(2025): 697-714.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Qiangya]的文章
[Liu, Tao]的文章
[Na, Jing]的文章
百度学术
百度学术中相似的文章
[Li, Qiangya]的文章
[Liu, Tao]的文章
[Na, Jing]的文章
必应学术
必应学术中相似的文章
[Li, Qiangya]的文章
[Liu, Tao]的文章
[Na, Jing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。