科研成果详情

发表状态已发表Published
题名Choosing the number of factors in factor analysis with incomplete data via a novel hierarchical Bayesian information criterion
作者
发表日期2025-03-01
发表期刊Advances in Data Analysis and Classification
ISSN/eISSN1862-5347
卷号19期号:1页码:209-235
摘要

The Bayesian information criterion (BIC), defined as the observed data log likelihood minus a penalty term based on the sample size N, is a popular model selection criterion for factor analysis with complete data. This definition has also been suggested for incomplete data. However, the penalty term based on the ‘complete’ sample size N is the same no matter whether in a complete or incomplete data case. For incomplete data, there are often only N

关键词BIC Factor analysis Incomplete data Maximum likelihood Model selection Variational Bayesian
DOI10.1007/s11634-024-00582-w
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:001176554300001
Scopus入藏号2-s2.0-105001585927
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/12824
专题工商管理学院
通讯作者Zhao, Jianhua
作者单位
1.School of Statistics and Mathematics,Yunnan University of Finance and Economics,Kunming,355 Longquan road,650221,China
2.School of Mathematics and Statistics,Guilin University of Technology,Guilin,541004,China
3.School of Accounting,Yunnan University of Finance and Economics,Kunming,650221,China
4.Division of Business and Management,BNU-HKBU United International College,Zhuhai,519087,China
5.Department of Mathematics and Information Technology,The Education University of Hong Kong,Hong Kong
推荐引用方式
GB/T 7714
Zhao, Jianhua,Shang, Changchun,Li, Shulanet al. Choosing the number of factors in factor analysis with incomplete data via a novel hierarchical Bayesian information criterion[J]. Advances in Data Analysis and Classification, 2025, 19(1): 209-235.
APA Zhao, Jianhua, Shang, Changchun, Li, Shulan, Xin, Ling, & Yu, Philip L.H. (2025). Choosing the number of factors in factor analysis with incomplete data via a novel hierarchical Bayesian information criterion. Advances in Data Analysis and Classification, 19(1), 209-235.
MLA Zhao, Jianhua,et al."Choosing the number of factors in factor analysis with incomplete data via a novel hierarchical Bayesian information criterion". Advances in Data Analysis and Classification 19.1(2025): 209-235.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhao, Jianhua]的文章
[Shang, Changchun]的文章
[Li, Shulan]的文章
百度学术
百度学术中相似的文章
[Zhao, Jianhua]的文章
[Shang, Changchun]的文章
[Li, Shulan]的文章
必应学术
必应学术中相似的文章
[Zhao, Jianhua]的文章
[Shang, Changchun]的文章
[Li, Shulan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。