科研成果详情

发表状态已发表Published
题名Bayesian Matrix Factorization for Semibounded Data
作者
发表日期2023-06-01
发表期刊IEEE Transactions on Neural Networks and Learning Systems
ISSN/eISSN2162-237X
卷号34期号:6页码:3111-3123
摘要

Bayesian non-negative matrix factorization (BNMF) has been widely used in different applications. In this article, we propose a novel BNMF technique dedicated to semibounded data where each entry of the observed matrix is supposed to follow an Inverted Beta distribution. The model has two parameter matrices with the same size as the observation matrix which we factorize into a product of excitation and basis matrices. Entries of the corresponding basis and excitation matrices follow a Gamma prior. To estimate the parameters of the model, variational Bayesian inference is used. A lower bound approximation for the objective function is used to find an analytically tractable solution for the model. An online extension of the algorithm is also proposed for more scalability and to adapt to streaming data. The model is evaluated on five different applications: part-based decomposition, collaborative filtering, market basket analysis, transactions prediction and items classification, topic mining, and graph embedding on biomedical networks.

关键词Inverted Beta (IB) nonnegative matrix factorization (NMF) online learning variational inference
DOI10.1109/TNNLS.2021.3111824
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000732143900001
Scopus入藏号2-s2.0-85118677433
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13088
专题个人在本单位外知识产出
理工科技学院
通讯作者Dalhoumi, Oumayma
作者单位
1.Concordia Institute for Information Systems Engineering (CIISE),Concordia University,Montreal,H3G 1M8,Canada
2.Grenoble Institute of Technology,G-SCOP Laboratory,Grenoble,38000,France
3.Huaqiao University,Department of Computer Science and Technology,Xiamen,361021,China
推荐引用方式
GB/T 7714
Dalhoumi, Oumayma,Bouguila, Nizar,Amayri, Manaret al. Bayesian Matrix Factorization for Semibounded Data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(6): 3111-3123.
APA Dalhoumi, Oumayma, Bouguila, Nizar, Amayri, Manar, & Fan, Wentao. (2023). Bayesian Matrix Factorization for Semibounded Data. IEEE Transactions on Neural Networks and Learning Systems, 34(6), 3111-3123.
MLA Dalhoumi, Oumayma,et al."Bayesian Matrix Factorization for Semibounded Data". IEEE Transactions on Neural Networks and Learning Systems 34.6(2023): 3111-3123.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Dalhoumi, Oumayma]的文章
[Bouguila, Nizar]的文章
[Amayri, Manar]的文章
百度学术
百度学术中相似的文章
[Dalhoumi, Oumayma]的文章
[Bouguila, Nizar]的文章
[Amayri, Manar]的文章
必应学术
必应学术中相似的文章
[Dalhoumi, Oumayma]的文章
[Bouguila, Nizar]的文章
[Amayri, Manar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。