题名 | A Selective Supervised Latent Beta-Liouville Allocation for Document Classification |
作者 | |
发表日期 | 2023 |
会议名称 | 36th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE) |
会议录名称 | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
![]() |
ISSN | 0302-9743 |
卷号 | 13925 LNAI |
页码 | 37-48 |
会议日期 | JUL 19-22, 2023 |
会议地点 | Shanghai, PEOPLES R CHINA |
摘要 | We propose a novel model, selective supervised Latent Beta-Liouville (ssLBLA), that improves the performance and generative process of supervised probabilistic topic models with a more flexible prior and simple framework. ssLBLA model utilizes the “bag-of-selective-words” instead of the “bag-of-words” in the topic modeling by using a Bernoulli distribution to identify the discrimination power of a word for its assigned topic. Indeed, ssLBLA improves and inherits the general framework of selective supervised Latent Dirichlet Allocation (ssLDA) and can predict many types of responses. This paper presents a simple framework that utilizes the collapsed Gibbs sampling inference technique coupled with the flexible Beta-Liouville (BL) distribution prior to achieve more accurate estimations. Experimental results in single-label document classification show the merits of our new approach. |
关键词 | Beta-Liouville classification collapsed Gibbs sampler supervised learning Topic model |
DOI | 10.1007/978-3-031-36819-6_4 |
URL | 查看来源 |
收录类别 | CPCI-S |
语种 | 英语English |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods |
WOS记录号 | WOS:001327651400004 |
Scopus入藏号 | 2-s2.0-85172413837 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13090 |
专题 | 理工科技学院 |
通讯作者 | Luo,Zhiwen |
作者单位 | 1.The Concordia Institute for Information Systems Engineering (CIISE),Concordia University,Montréal,H3H 1M8,Canada 2.Department of Computer Science,Beijing Normal University-Hong Kong Baptist University United International College (UIC),Zhuhai,Guangdong,519088,China |
推荐引用方式 GB/T 7714 | Luo,Zhiwen,Amayri,Manar,Fan,Wentaoet al. A Selective Supervised Latent Beta-Liouville Allocation for Document Classification[C], 2023: 37-48. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论