科研成果详情

题名A Selective Supervised Latent Beta-Liouville Allocation for Document Classification
作者
发表日期2023
会议名称36th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE)
会议录名称Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN0302-9743
卷号13925 LNAI
页码37-48
会议日期JUL 19-22, 2023
会议地点Shanghai, PEOPLES R CHINA
摘要

We propose a novel model, selective supervised Latent Beta-Liouville (ssLBLA), that improves the performance and generative process of supervised probabilistic topic models with a more flexible prior and simple framework. ssLBLA model utilizes the “bag-of-selective-words” instead of the “bag-of-words” in the topic modeling by using a Bernoulli distribution to identify the discrimination power of a word for its assigned topic. Indeed, ssLBLA improves and inherits the general framework of selective supervised Latent Dirichlet Allocation (ssLDA) and can predict many types of responses. This paper presents a simple framework that utilizes the collapsed Gibbs sampling inference technique coupled with the flexible Beta-Liouville (BL) distribution prior to achieve more accurate estimations. Experimental results in single-label document classification show the merits of our new approach.

关键词Beta-Liouville classification collapsed Gibbs sampler supervised learning Topic model
DOI10.1007/978-3-031-36819-6_4
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号WOS:001327651400004
Scopus入藏号2-s2.0-85172413837
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13090
专题理工科技学院
通讯作者Luo,Zhiwen
作者单位
1.The Concordia Institute for Information Systems Engineering (CIISE),Concordia University,Montréal,H3H 1M8,Canada
2.Department of Computer Science,Beijing Normal University-Hong Kong Baptist University United International College (UIC),Zhuhai,Guangdong,519088,China
推荐引用方式
GB/T 7714
Luo,Zhiwen,Amayri,Manar,Fan,Wentaoet al. A Selective Supervised Latent Beta-Liouville Allocation for Document Classification[C], 2023: 37-48.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Luo,Zhiwen]的文章
[Amayri,Manar]的文章
[Fan,Wentao]的文章
百度学术
百度学术中相似的文章
[Luo,Zhiwen]的文章
[Amayri,Manar]的文章
[Fan,Wentao]的文章
必应学术
必应学术中相似的文章
[Luo,Zhiwen]的文章
[Amayri,Manar]的文章
[Fan,Wentao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。